Skip to main content
Log in

Ectopic expression of a phytochrome B gene from Chinese cabbage (Brassica rapa L. ssp. pekinensis) in Arabidopsis thaliana promotes seedling de-etiolation, dwarfing in mature plants, and delayed flowering

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Phytochrome B (phyB) is an essential red light receptor that predominantly mediates seedling de-etiolation, shade-avoidance response, and flowering time. In this study, we isolate a full-length cDNA of PHYB, designated BrPHYB, from Chinese cabbage (Brassica rapa L. ssp. pekinensis), and we find that BrphyB protein has high amino acid sequence similarity and the closest evolutionary relationship to Arabidopsis thaliana phyB (i.e., AtphyB). Quantitative reverse transcription (RT)-PCR results indicate that the BrPHYB gene is ubiquitously expressed in different tissues under all light conditions. Constitutive expression of the BrPHYB gene in A. thaliana significantly enhances seedling de-etiolation under red- and white-light conditions, and causes dwarf stature in mature plants. Unexpectedly, overexpression of BrPHYB in transgenic A. thaliana resulted in reduced expression of gibberellins biosynthesis genes and delayed flowering under short-day conditions, whereas AtPHYB overexpression caused enhanced expression of FLOWERING LOCUS T and earlier flowering. Our results suggest that BrphyB might play an important role in regulating the development of Chinese cabbage. BrphyB and AtphyB have conserved functions during de-etiolation and vegetative plant growth and divergent functions in the regulation of flowering time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdurakhmonov IY, Buriev ZT, Logan-Young CJ, Abdukarimov A, Pepper AE (2010) Duplication, divergence and persistence in the phytochrome photoreceptor gene family of cottons (Gossypium spp.). BMC Plant Biol 10:119

    Article  PubMed Central  PubMed  Google Scholar 

  • Bae G, Choi G (2008) Decoding of light signals by plant phytochromes and their interacting proteins. Annu Rev Plant Biol 59:281–311

    Article  CAS  PubMed  Google Scholar 

  • Bagnall DJ, King RW, Whitelam GC, Boylan MT, Wagner D, Quail PH (1995) Flowering responses to altered expression of phytochrome in mutants and transgenic lines of Arabidopsis thaliana (L.) Heynh. Plant Physiol 108:1495–1503

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chandler J, Dean C (1994) Factors influencing the vernalization response and flowering time of late flowering mutants of Arabidopsis thaliana (L.) Heynh. J Exp Bot 45:1279–1288

    Article  CAS  Google Scholar 

  • Childs KL, Cordonnier-Pratt MM, Pratt LH, Morgan PW (1992) Genetic regulation of development in Sorghum bicolor. VII. ma R3 flowering mutant lacks a phytochrome that predominates in green tissue. Plant Physiol 99:765–770

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Childs KL, Miller FR, Cordonnier-Pratt M, Pratt LH, Morgan PW, Mullet JE (1997) The sorghum photoperiod sensitivity gene, Ma 3 , encodes a phytochrome B. Plant Physiol 113:611–619

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Clack T, Mathews S, Sharrock RA (1994) The phytochrome apoprotein family in Arabidopsis is encoded by five genes: the sequences and expression of PHYD and PHYE. Plant Mol Biol 25:413–427

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent A (1998) Floral dip: a simplified method for Agrobacterium–mediated transformation of Arabidopsis thaliana. Plant J. 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Clough RC, Vierstra RD (1997) Phytochrome degradation. Plant, Cell Environ 20:713–721

    Article  CAS  Google Scholar 

  • Coen ES, Nugent JM (1994) Evolution of flowers and inflorescences. Development (Suppl.) 1994:107–116

  • Deng XW, Quail PH (1999) Signalling in light–controlled development. Semin Cell Dev Biol 10:21–129

    Article  CAS  Google Scholar 

  • Devlin PF, Rood SB, Somers DE, Quail PH, Whitelam GC (1992) Photophysiology of the elongated internode (ein) mutant of Brassica rapa. Plant Physiol 100:1442–1447

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Devlin PF, Somers DE, Quail PH, Whitelam GC (1997) The Brassica rapa elongated internode (EIN) gene encodes phytochrome B. Plant Mol Biol 34:537–547

    Article  CAS  PubMed  Google Scholar 

  • Endo M, Nakamura S, Takashi A, Mochizuki N, Nagatani A (2005) Phytochrome B in the mesophyll delays flowering by suppressing FLOWERING LOCUS T expression in Arabidopsis vascular bundles. Plant Cell 17:1941–1952

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fankhauser C, Casal JJ (2004) Phenotypic characterization of a photomorphogenic mutant. Plant J 39:747–760

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Goto N, Kumagai T, Koorneef M (1991) Flowering responses to light-breaks in photomorphogenic mutants of Arabidopsis thaliana, a long-day plant. Physiol Plant 83:209–215

    Article  Google Scholar 

  • Halliday KJ, Thomas B, Whitelam GC (1997) Expression of heterologous phytochromes A, B or C in transgenic tobacco plants alters vegetative development and flowering time. Plant J 12:1079–1090

  • Hall A, Kozma-Bognár L, Bastow RM, Nagy F, Millar AJ (2002) Distinct regulation of CAB and PHYB gene expression by similar circadian clocks. Plant J 32:529–537

    Article  CAS  PubMed  Google Scholar 

  • Hanumappa M, Pratt LH, Cordonnier-Pratt MM, Deitzer GF (1999) A photoperiod-insensitive barley line contains a light-labile phytochrome B. Plant Physiol 119:1033–1040

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hennig L, Poppe C, Sweere U, Martin A, Schäfer E (2001) Negative interference of endogenous phytochrome B with phytochrome A function in Arabidopsis. Plant Physiol 125:1036–1044

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hirschfeld M, Tepperman JM, Clack T, Quail PH, Sharrock RA (1998) Coordination of phytochrome levels in phyB mutants of Arabidopsis as revealed by apoprotein-specific monoclonal antibodies. Genetics 149:523–535

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jacobsen SE, Olszewski NE (1993) Mutations at the SPINDLY locus of Arabidopsis alter gibberellin signal transduction. Plant Cell 5:887–896

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jiao Y, Lau OS, Deng XW (2007) Light-regulated transcriptional networks in higher plants. Nat Rev Genet 8:217–230

    Article  CAS  PubMed  Google Scholar 

  • Koornneef M, Rolff E, Spruit CJP (1980) Genetic control of light-inhibited hypocotyl elongation in Arabidopsis thaliana (L.) Heynh. Zeitschrift für Pflanzenphysiologie 100:147–160

    Article  Google Scholar 

  • Koornneef M, Hanhart C, van Loenen-Martinet P, Blankestijn de Vries H (1995) The effect of daylength on the transition to flowering in phytochrome-deficient, late-flowering and double mutants of Arabidopsis thaliana. Physiol Plant 95:260–266

    Article  CAS  Google Scholar 

  • Krall L, Reed JW (2000) The histidine kinase-related domain participates in phytochrome B function but is dispensable. Proc Natl Acad Sci USA 97:8169–8174

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Langridge J (1957) Effect of day-length and gibberellic acid on the flowering of Arabidopsis. Nature 180:36–37

    Article  CAS  Google Scholar 

  • Lazarova GI, Kubota T, Frances S, Peters JL, Hughes MJ, Brandstädter J, Széll M, Kendrick RE, Cordonnier-Pratt MM, Pratt LH (1998) Characterization of tomato PHYB1 and identification of molecular defects in four mutant alleles. Plant Mol Biol 38:1137–1146

    Article  CAS  PubMed  Google Scholar 

  • Li J, Li G, Wang H, Deng XW (2011) Phytochrome signaling mechanisms. Arabidopsis Book 9:e0148

    Article  PubMed Central  PubMed  Google Scholar 

  • Lin C (2000) Photoreceptors and regulation of flowering time. Plant Physiol 123:39–50

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ma H (1994) The unfolding drama of flower development: recent results from genetic and molecular analyses. Genes Dev 8:745–756

    Article  CAS  PubMed  Google Scholar 

  • Manak JR, Scott MP (1994) A class act: conservation of homeodomain protein functions. Development 120(Suppl):61–71

    Google Scholar 

  • McCormac A, Whitelam G, Smith H (1992) Light-grown plants of transgenic tobacco expressing an introduced oat phytochrome A gene under the control of a constitutive viral promoter exhibit persistent growth inhibition by far-red light. Planta 188:173–181

  • Mathews S (2005) Phytochrome evolution in green and nongreen plants. J Hered 96:197–204

    Article  CAS  PubMed  Google Scholar 

  • Mathews S (2006) Phytochrome-mediated development in land plants: red light sensing evolves to meet the challenges of changing light environments. Mol Ecol 15:3483–3503

    Article  CAS  PubMed  Google Scholar 

  • Mathews S, McBreen K (2008) Phylogenetic relationships of B-related phytochromes in the Brassicaceae: redundancy and the persistence of phytochrome D. Mol Phylogenet Evol 49:411–423

    Article  CAS  PubMed  Google Scholar 

  • McNellis TW, von Arnim AG, Araki T, Komeda Y, Misera S, Deng XW (1994) Genetic and Molecular analysis of an allelic series of cop1 mutants suggests functional roles for the multiple protein domains. Plant Cell 6:487–500

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moon J, Suh SS, Lee H, Choi KR, Hong CB, Paek NC, Kim SG, Lee I (2003) The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. Plant J 35:613–623

    Article  CAS  PubMed  Google Scholar 

  • Nagatani A, Chory J, Furuya M (1991) Phytochrome B is not detectable in the hy3 mutant of Arabidopsis, which is deficient in responding to end-of-day far-red light treatments. Plant Cell Physiol 32:1119–1122

    CAS  Google Scholar 

  • Pao CI, Morgan PW (1986a) Genetic regulation of development in Sorghum bicolor. I. Role of the maturity genes. Plant Physiol 82:575–580

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pao CI, Morgan PW (1986b) Genetic regulation of development in Sorghum bicolor. II. Effect of the ma3R allele mimicked by GA3. Plant Physiol 82:581–584

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Piñeiro M, Coupland G (1998) The control of flowering time and floral identity in Arabidopsis. Plant Physiol 117:1–8

    Article  PubMed Central  PubMed  Google Scholar 

  • Quail PH (1997) An emerging molecular map of the phytochromes. Plant, Cell Environ 20:657–665

    Article  CAS  Google Scholar 

  • Quail PH (2002) Phytochrome photosensory signalling networks. Nat Rev Mol Cell Biol 3:85–93

    Article  CAS  PubMed  Google Scholar 

  • Quail PH, Schäfer E, Marmé D (1973) Turnover of phytochrome in pumpkin cotyledons. Plant Physiol 52:128–131

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reed JW, Nagpal P, Poole DS, Furuya M, Chory J (1993) Mutations in the gene for red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell 5:147–157

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sharrock RA, Quail PH (1989) Novel phytochrome sequences in Arabidopsis thaliana: structure, evolution, and differential expression of a plant regulatory photoreceptor family. Genes Dev 3:1745–1757

    Article  CAS  PubMed  Google Scholar 

  • Sheehan MJ, Kennedy LM, Costich DE, Brutnell TP (2007) Subfunctionalization of PhyB1 and PhyB2 in the control of seedling and mature plant traits in maize. Plant J 49:338–353

    Article  CAS  PubMed  Google Scholar 

  • Short TW (1999) Overexpression of Arabidopsis phytochrome B inhibits phytochrome A function in the presence of sucrose. Plant Physiol 119:1497–1506

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Somers DE, Sharrock RA, Tepperman JM, Quail PH (1991) The hy3 long hypocotyl mutant of Arabidopsis is deficient in phytochrome B. Plant Cell 3:1263–1274

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sussex IM (1989) Developmental programming of the shoot meristem. Cell 56:225–229

    Article  CAS  PubMed  Google Scholar 

  • Takano M, Inagaki N, Xie X, Yuzurihara N, Hihara F, Ishizuka T, Yano M, Nishimura M, Miyao A, Hirochika H, Shinomura T (2005) Distinct and cooperative functions of phytochromes A, B, and C in the control of deetiolation and flowering in rice. Plant Cell 17:3311–3325

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular Evolutionary Genetics Analysis Version 6.0. Mol Biol Evol 30:2725–2729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tepperman JM, Hudson ME, Khanna R, Zhu T, Chang SH, Wang X, Quail PH (2004) Expression profiling of phyB mutant demonstrates substantial contribution of other phytochromes to red-light-regulated gene expression during seedling de-etiolation. Plant J 38:725–739

    Article  CAS  PubMed  Google Scholar 

  • Thiele A, Herold M, Lenk I, Quail PH, Gatz C (1999) Heterologous expression of Arabidopsis phytochrome B in transgenic potato influences photosynthetic performance and tuber development. Plant Physiol 120:73–82

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thomas B, Vince-Prue D (1997) Photoperiodism in plants. Academic Press, New York

    Google Scholar 

  • Wagner D, Tepperman JM, Quail PH (1991) Overexpression of phytochrome B induces a short hypocotyl phenotype in transgenic Arabidopsis. Plant Cell 3:1275–1288

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wagner D, Koloszvari M, Quail PH (1996a) Two small spatially distinct regions of phytochrome B are required for efficient signaling rates. Plant Cell 8:859–871

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wagner D, Koloszvari M, Quail PH (1996b) Two small spatially distinct regions of phytochrome B are required for efficient signaling rates. Plant Cell 8:859–871

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang H (2005) Signaling mechanisms of higher plant photoreceptors: a structure-function perspective. Curr Top Dev Biol 68:227–261

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Deng XW (2003) Dissecting the phytochrome A-dependent signaling network in higher plants. Trends Plant Sci 8:172–178

    Article  CAS  PubMed  Google Scholar 

  • Weller JL, Reid JB (1993) Photoperiodism and photocontrol of stem elongation in two photomorphogenic mutants of Pisum sativum L. Planta 189:15–23

    Article  Google Scholar 

  • Weller JL, Reid JB, Taylor SA, Mufet IC (1997) The genetic control of flowering in pea. Trends Plant Sci 2:412–418

    Article  Google Scholar 

  • Wester L, Somers DE, Clack T, Sharrock RA (1994) Transgenic complementation of the hy3 phytochrome B mutation and response to PHYB gene copy number in Arabidopsis. Plant J 5:261–272

    Article  CAS  PubMed  Google Scholar 

  • Wilson RN, Heckman JW, Somerville CR (1992) Gibberellin is required for flowering in Arabidopsis thaliana under short days. Plant Physiol 100:403–408

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu SH, Lagarias JC (2000) Defining the bilin lyase domain: lessons from the extended phytochrome superfamily. Biochemistry 39:13487–13495

    Article  CAS  PubMed  Google Scholar 

  • Wu FQ, Zhang XM, Li DM, Fu YF (2011) Ectopic expression reveals a conserved PHYB homolog in soybean. PLoS ONE 6:e27737

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yamaguchi R, Nakamura M, Mochizuki N, Kay SA, Nagatani (1999) Light–dependent transition of a phytochrome B–GFP fusion protein to the nucleus in transgenic Arabidopsis. J Cell Biol 145:43–445

  • Yang J, Lin R, Sullivan J, Hoecker U, Liu B, Xu L, Deng XW, Wang H (2005) Light regulates COP1-mediated degradation of HFR1, a transcription factor essential for light signaling in Arabidopsis. Plant Cell 17:804–821

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zheng X, Wu S, Zhai H, Zhou P, Song M, Su L, Xi Y, Li Z, Cai Y, Meng F, Yang L, Wang H, Yang J (2013) Arabidopsis phytochrome B promotes SPA1 nuclear accumulation to repress photomorphogenesis under far-red light. Plant Cell 25:115–133

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu Y, Tepperman JM, Fairchild CD, Quail PH (2000) Phytochrome B binds with greater apparent affinity than phytochrome A to the basic helix-loop-helix factor PIF3 in a reaction requiring the PAS domain of PIF3. Proc Natl Acad Sci USA 97:13419–13424

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Genetically Modified Organisms Breeding Major Projects of the People’s Republic of China (Grant No. 2014ZX08010-003), the Natural Science Foundation of the People’s Republic of China (Grant Nos. 31170267 and 30871438) and the Modern Agricultural Industrial Technology System Funding of Shandong Province of the People’s Republic of China (SDAIT-02-022-04).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian-Wei Gao or Jian-Ping Yang.

Additional information

Mei-Fang Song, Shu Zhang and Pei Hou have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 12215 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, MF., Zhang, S., Hou, P. et al. Ectopic expression of a phytochrome B gene from Chinese cabbage (Brassica rapa L. ssp. pekinensis) in Arabidopsis thaliana promotes seedling de-etiolation, dwarfing in mature plants, and delayed flowering. Plant Mol Biol 87, 633–643 (2015). https://doi.org/10.1007/s11103-015-0302-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-015-0302-5

Keywords

Navigation