Skip to main content
Log in

CbCBF from Capsella bursa-pastoris enhances cold tolerance and restrains growth in Nicotiana tabacum by antagonizing with gibberellin and affecting cell cycle signaling

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Plant cells respond to cold stress via a regulatory mechanism leading to enhanced cold acclimation accompanied by growth retardation. The C-repeat binding factor (CBF) signaling pathway is essential for cold response of flowering plants. Our previously study documented a novel CBF-like gene from the cold-tolerant Capsella bursa-pastoris named CbCBF, which was responsive to chilling temperatures. Here, we show that CbCBF expression is obviously responsive to chilling, freezing, abscisic acid, gibberellic acid (GA), indoleacetic acid or methyl jasmonate treatments and that the CbCBF:GFP fusion protein was localized to the nucleus. In addition, CbCBF overexpression conferred to the cold-sensitive tobacco plants enhanced tolerance to chilling and freezing, as well as dwarfism and delayed flowering. The leaf cells of CbCBF overexpression tobacco lines attained smaller sizes and underwent delayed cell division with reduced expression of cyclin D genes. The dwarfism of CbCBF transformants can be partially restored by GA application. Consistently, CbCBF overexpression reduced the bioactive gibberellin contents and disturbed the expression of gibberellin metabolic genes in tobacco. Meanwhile, cold induced CbCBF expression and cold tolerance in C. bursa-pastoris are reduced by GA. We conclude that CbCBF confers cold resistance and growth inhibition to tobacco cells by interacting with gibberellin and cell cycle pathways, likely through activation of downstream target genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Achard P, Gong F, Cheminant S, Alioua M, Hedden P, Genschik P (2008) The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell 20:2117–2129

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X, Agarwal M, Zhu JK (2003) ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Gene Dev 17:1043–1054

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chinnusamy V, Zhu J, Zhu JK (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 12:444–451

    Article  CAS  PubMed  Google Scholar 

  • Criqui MC, Parmentier Y, Derevier A, Shen WH, Dong AW, Genschik P (2000) Cell cycle-dependent proteolysis and ectopic overexpression of cyclin B1 in tobacco BY2 cells. Plant J 24:763–773

    Article  CAS  PubMed  Google Scholar 

  • Dambrauskas G, Aves S, Bryant J, Francis D, Rogers H (2003) Genes encoding two essential DNA replication activation proteins, CDC6 and MCM3, exhibit very different patterns of expression in the tobacco BY-2 cell cycle. J Exp Bot 54:699–706

    Article  CAS  PubMed  Google Scholar 

  • Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 33:751–763

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform 15:113

    Article  Google Scholar 

  • Gallego-Giraldo L, Ubeda-Tomas S, Gisbert C, Garcia-Martinez JL, Moritz T, Lopez-Diaz I (2008) Gibberellin homeostasis in tobacco is regulated by gibberellin metabolism genes with different gibberellin sensitivity. Plant Cell Physiol 49:679–690

    Article  CAS  PubMed  Google Scholar 

  • Gao MJ, Allard G, Byass L, Flanagan AM, Singh J (2002) Regulation and characterization of four CBF transcription factors from Brassica napus. Plant Mol Biol 49:459–471

    Article  CAS  PubMed  Google Scholar 

  • Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF (2000) Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol 124:1854–1865

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:D1178–D1186

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guo J, Wang MH (2008) Transgenic tobacco plants overexpressing the Nicta; CycD3; 4 genes demonstrate accelerated growth rates. BMB Rep 7:542–547

    Article  Google Scholar 

  • Haake V, Cook D, Riechmann JL, Pineda O, Thomashow MF, Zhang JZ (2002) Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol 130:639–648

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hsieh TH, Lee JT, Charng YY, Chan MT (2002a) Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiol 130:618–626

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hsieh TH, Lee JT, Yang PT, Chiu LH, Charng YY, Wang YC, Chan MT (2002b) Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol 129:1086–1094

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang JG, Yang M, Liu P, Yang GD, Wu CA, Zheng CC (2009) GhDREB1 enhances abiotic stress tolerance, delays GA-mediated development and represses cytokinin signaling in transgenic Arabidopsis. Plant Cell Environ 32:1132–1145

    Google Scholar 

  • Hurka H, Bleeker W, Neuffer B (2003) Evolutionary process associated with biological invasions in the Brassicaceae. Biol Invasions 5:281–292

    Article  Google Scholar 

  • Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol 47:141–153

    Article  CAS  PubMed  Google Scholar 

  • Jaglo KR, Kleff S, Amundsen KL, Zhang X, Haake V, Zhang JZ, Deits T, Thomashow MF (2001) Components of the Arabidopsis C-repeat/dehydration- responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiol 127:910–917

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104–106

    Article  CAS  PubMed  Google Scholar 

  • Jasinski S, Leite C, Domenichini S, Stevens R, Raynaud C, Perennes C, Bergounioux C, Glab N (2003) NtKIS2, a novel tobacco cyclin-dependent kinase inhibitor is differentially expressed during the cell cycle and plant development. Plant Physiol Biochem 41:667–676

    Article  CAS  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    Article  CAS  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291

    Article  CAS  PubMed  Google Scholar 

  • Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2004) A combination of the Arabidopsis DREB1a gene and stress-inducible RD29a promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol 45:346–350

    Article  CAS  PubMed  Google Scholar 

  • Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kawamura K, Murray J, Shinmyo A, Sekine M (2006) Cell cycle regulated D3-type cyclins form active complexes with plant-specific B-type cyclin-dependent kinase in vitro. Plant Mol Biol 61:311–327

    Article  CAS  PubMed  Google Scholar 

  • Kitashiba H, Ishizaka T, Isuzugawa K, Nishimura K, Suzuki T (2004) Expression of a sweet cherry DREB1/CBF ortholog in Arabidopsis confers salt and freezing tolerance. J Plant Physiol 161:1171–1176

    Article  CAS  PubMed  Google Scholar 

  • Knight H, Zarka DG, Okamoto H, Thomashow MF, Knight MR (2004) Abscisic acid induces CBF gene transcription and subsequent induction of cold-regulated genes via the CRT promoter element. Plant Physiol 135:1710–1717

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Knight MR, Knight H (2012) Low-temperature perception leading to gene expression and cold tolerance in higher plants. New Phytol 195:737–751

    Article  CAS  PubMed  Google Scholar 

  • Körner C (2006) Significance of temperature in plant life. In: Morrison J, Morecroft M (eds) Plant growth and climate change. Blackwell, Oxford, pp 48–69

    Chapter  Google Scholar 

  • Kwon HK, Wang MH (2010) The D-type cyclin gene (Nicta; CycD3; 4) controls cell cycle progression in response to sugar availability in tobacco. J Plant Physiol 168:133–139

    Article  PubMed  Google Scholar 

  • Li W, Wu J, Weng S, Zhang Y, Zhang D, Shi C (2010) Identification and characterization of dwarf 62, a loss-of-function mutation in DLT/OsGRAS-32 affecting gibberellin metabolism in rice. Planta 232:1383–1396

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lorbiecke R, Sauter M (1998) Induction of cell growth and cell division in the intercalary meristem of submerged deepwater rice (Oryza sativa L.). Planta 204:140–145

    Article  CAS  Google Scholar 

  • Ma QB, Dai XY, Xu YY, Guo J, Liu YJ, Chen N, Xiao J, Zhang DJ, Xu ZH, Zhang XS, Chong K (2009) Enhanced tolerance to chilling stress in OsMYB3R-2 transgenic rice is mediated by alteration in cell cycle and ectopic expression of stress genes. Plant Physiol 150:244–256

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Medina J, Bargues M, Terol J, Perez-Alonso M, Salinas J (1998) The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration. Plant Physiol 119:463–469

    Article  Google Scholar 

  • Menges M, Samland AK, Planchais S, Murray J (2006) The D-Type cyclin CYCD3; 1 is limiting for the G1-to-S-phase transition in Arabidopsis. Plant Cell 18:893–906

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakagami H, Kawamura K, Sugisaka K, Sekine M, Shinmyo A (2002) Phosphorylation of retinoblastoma-related protein by the cyclin D/cyclin-dependent kinase complex is activated at the G1/S-phase transition in tobacco. Plant Cell 14:1847–1857

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Novillo F, Alonso JM, Ecker JR, Salinas J (2004) CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proc Natl Acad Sci USA 101:3985–3990

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Novillo F, Medina J, Salinas J (2007) Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon. Proc Natl Acad Sci USA 104:21002–21007

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Owttrim G, Mandel T, Trachsel H, Thomas A, Kuhlemeier C (1994) Characterization of the tobacco eIF-4A gene family. Plant Mol Biol 26:1747–1757

    Article  CAS  PubMed  Google Scholar 

  • Park JM, Park CJ, Lee SB, Ham B, Shin R, Paek K (2001) Overexpression of the tobacco Tsi1 gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell 13:1035–1046

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Riou-Khamlichi C, Huntley R, Jacqmard A, Murray J (1999) Cytokinin activation of Arabidopsis cell division through a D-type cyclin. Science 283:1541–1544

    Article  CAS  PubMed  Google Scholar 

  • Rolland F, Moore B, Sheen J (2002) Sugar sensing and signaling in plants. Plant Cell 14:S185–S205

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shan DP, Huang JG, Yang YT, Guo YH, Wu CA, Yang GD, Gao Z, Zheng CC (2007) Cotton GhDREB1 increases plant tolerance to low temperature and is negatively regulated by gibberellic acid. New Phytol 176:70–81

    Article  CAS  PubMed  Google Scholar 

  • Sorrell DA, Combettes B, Chaubet-Gigot N, Gigot C, Murray J (1999) Distinct cyclin D genes show mitotic accumulation or constant levels of transcripts in tobacco bright yellow-2 cells. Plant Physiol 119:343–351

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA 94:1035–1040

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Ann Rev Plant Physiol Plant Mol Biol 50:571–599

    Article  CAS  Google Scholar 

  • Ursin V, Irvine J, Hiatt W, Shewmaker C (1991) Developmental analysis of elongation factor-1α expression in transgenic tobacco. Plant Cell 3:583–591

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang XL, Liu SX, Liu XJ, Chen ZH, Liu XF, Pang YZ, Sun XF, Tang KX (2004) Molecular cloning and characterization of a CBF gene from Capsella bursa-pastoris. DNA Seq 15:180–187

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Hua J (2009) A moderate decrease in temperature induces COR15a expression through the CBF signaling cascade and enhances freezing tolerance. Plant J 60:340–349

    Article  CAS  PubMed  Google Scholar 

  • Welling A, Palva ET (2008) Involvement of CBF transcription factors in winter hardiness in birch. Plant Physiol 147:1199–1211

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu LH, Zhou MQ, Liang J, Shen C, Lin J (2012) Transgenic tobacco plants over expressing cold regulated protein CbCOR15b from Capsella bursa-pastoris exhibit enhanced cold tolerance. J Plant Physiol 169:1408–1416

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi S (2008) Gibberellin metabolism and its regulation. Ann Rev Plant Biol 59:225–251

    Article  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low temperature, or high-salt stress. Plant Cell 6:251–264

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu Y, Steinmetz A, Meyer D, Brown S, Shen WH (2003) The tobacco A-type cyclin, Nicta; CYCA3; 2, at the nexus of cell division and differentiation. Plant Cell 15:2763–2777

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou MQ, Shen C, Wu LH, Tang KX, Lin J (2011) CBF-dependent signaling pathway: A key low temperature responder in plants. Crit Rev Biotechnol 31:186–192

    Article  CAS  PubMed  Google Scholar 

  • Zhou MQ, Wu LH, Liang J, Shen C, Lin J (2012a) Expression analysis and functional characterization of a novel cold-responsive gene CbCOR15a from Capsella bursa-pastoris. Mol Biol Rep 39:5169–5179

    Article  CAS  PubMed  Google Scholar 

  • Zhou MQ, Wu LH, Liang J, Shen C, Lin J (2012b) Cold induced modulation of CbICE53 gene activates endogenous cold responsive genes to enhance cold acclimation in transgenic tobacco. Mol Breeding 30:1611–1620

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for the financial support from the Natural Science Foundation of China (31370346, 31170287), the Major Program for the Fundamental Research of Shanghai, China (09JC1401700) and the National High Technology Research and Development Program of China (2008AA10Z105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Lin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2569 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, M., Xu, M., Wu, L. et al. CbCBF from Capsella bursa-pastoris enhances cold tolerance and restrains growth in Nicotiana tabacum by antagonizing with gibberellin and affecting cell cycle signaling. Plant Mol Biol 85, 259–275 (2014). https://doi.org/10.1007/s11103-014-0181-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-014-0181-1

Keywords

Navigation