Skip to main content
Log in

Identification of two additional members of the tRNA isopentenyltransferase family in Physcomitrella patens

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The Physcomitrella patens genome has seven genes apparently coding for the isopentenyltransferase type of tRNA-modifying enzyme, while other organisms have one or two. The predicted sequences have parts that differ significantly from other isopentenyltransferases. Only one of the seven (PpIPT1) has earlier been shown to be expressed. We now report expression of two more, PpIPT4 and PpIPT5. The cloned genes were able to functionally complement a yeast mutant lacking tRNA isopentenyltransferase. Sequencing showed they are related to the earlier studied PpIPT1. The sequences of the three differ mainly from each other in a tRNA-binding area and the 5′-end subcellular targeting motif area. This indicates that, after arising through gene duplication, they have evolved to enable partly different functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

IPT:

Isopentenyltransferase

tRNA-IPT:

tRNA isopentenyltransferase

ATP/ADP-IPT:

Adenylate isopentenyltransferase

PpIPT:

Physcomitrella patens isopentenyltransferase

i6A:

N 6-(Δ2-isopentenyl)adenosine, isopentenyladenosine

References

  • Bruce BD (2001) The paradox of plastid transit peptides: conservation of function despite divergence in primary structure. Biochim Biophys Acta 1541:2–21

    Article  PubMed  CAS  Google Scholar 

  • Buck M, Connick M, Ames BN (1983) Complete analysis of tRNA-modified nucleosides by high-performance liquid chromatography: the 29 modified nucleosides of Salmonella typhimurium and Escherichia coli tRNA. Anal Biochem 129:1–13

    Article  PubMed  CAS  Google Scholar 

  • Chu H-M, Ko TP, Wang AH-J (2010) Crystal structure and substrate specificity of plant adenylate isopentenyltransferase from Humulus lupulus: distinctive binding affinity for purine and pyrimidine nucleotides. Nucl Acids Res 38:1738–1748

    Article  PubMed  CAS  Google Scholar 

  • Cove D, Bezanilla M, Harries P, Quatrano R (2006) Mosses as model systems for the study of metabolism and development. Ann Rev Plant Biol 57:497–520

    Article  CAS  Google Scholar 

  • Edgar RC (2004) Muscle: multiple sequence alignment with high accuracy and high throughput. Nucl Acids Res 32:1792–1797

    Article  PubMed  CAS  Google Scholar 

  • Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016

    Article  PubMed  CAS  Google Scholar 

  • Engel P (1968) The induction of biochemical and morphological mutants in the moss, Physeomitrella patens. Am J Bot 55:438–446

    Article  CAS  Google Scholar 

  • Filichkin SA, Priest HD, Givan SA, Shen R, Bryant DW, Fox SE, Wong W, Mockler TC (2010) Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Res 20:45–58

    Article  PubMed  CAS  Google Scholar 

  • Galante PAF (2004) Detection and evaluation of intron retention events in the human transcriptome. RNA 10:757–765

    Article  PubMed  CAS  Google Scholar 

  • Gehrke CW, Kuo KC, McCune RA, Gerhardt KO (1982) Quantitative enzymatic hydrolysis of tRNAs: reversed-phase high-performance liquid chromatography of tRNA nucleosides. J Chrom 230:297–308

    Article  CAS  Google Scholar 

  • Gietz RD, Schiestl RH (1997) Transforming yeast with DNA. Mol Cell Biol 5:255–269

    Google Scholar 

  • Gillman EC, Slusher LB, Martin NC, Hopper AK (1991) MOD5 translation initiation sites determine N6- isopentenyladenosine modification of mitochondrial and cytoplasmic tRNA. Mol Cell Biol 11:2382–2390

    PubMed  CAS  Google Scholar 

  • Golovko A, Hjälm G, Sitbon F, Nicander B (2000) Cloning of a human tRNA isopentenyl transferase. Gene 258:85–93

    Article  PubMed  CAS  Google Scholar 

  • Golovko A, Sitbon F, Tillberg E, Nicander B (2002) Identification of a tRNA isopentenyltransferase gene from Arabidopsis thaliana. Plant Mol Biol 49:161–169

    Article  PubMed  CAS  Google Scholar 

  • Grimsley NH, Ashton NW, Cove DJ (1977) Complementation analysis of auxotrophic mutants of the moss, Physcomitrella patens, using protoplast fusion. Mol Gen Genet 155:103–107

    Article  Google Scholar 

  • Gu R, Fu J, Guo S, Duan F, Wang Z, Mi G, Yuan L (2010) Comparative expression and phylogenetic analysis of maize cytokinin dehydrogenase/oxidase (CKX) gene family. J Plant Growth Regul 29:428–440

    Article  CAS  Google Scholar 

  • Hennikoff S, Hennikoff JG (1992) Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci USA 89:10915–10919

    Article  Google Scholar 

  • Hohe A, Rensing SA, Mildner M, Lang D, Reski R (2002) Day length and temperature strongly influence sexual reproduction and expression of a novel MADS-box gene in the moss Physcomitrella patens. Plant Biol 4:595–602

    Article  CAS  Google Scholar 

  • Hopper AK, Banks FEV (1978) A yeast mutant which accumulates precursor tRNAs. Cell 14:211–219

    Article  PubMed  CAS  Google Scholar 

  • Lang D, Zimmer AD, Rensing SA, Reski R (2008) Exploring plant biodiversity: the Physcomitrella genome and beyond. Trends Plant Sci 13:542–549

    Article  PubMed  CAS  Google Scholar 

  • Laten HM, Zahareas-Doktor S (1985) Presence and source of free isopentenyladenosine in yeasts. Proc Natl Acad Sci USA 82:1113–1115

    Article  PubMed  CAS  Google Scholar 

  • Letham DS, Palni LMS (1983) The biosynthesis and metabolism of cytokinins. Ann Rev Plant Physiol 34:163–197

    Article  CAS  Google Scholar 

  • Leung HE, Chen Y, Winkler ME (1997) Regulation of substrate recognition by the MiaA tRNA prenyltransferase modification enzyme of Escherichia coli K-12 * properties as native MiaA and was completely active for. J Biol Chem 272:13073–13083

    Article  PubMed  CAS  Google Scholar 

  • Martin A, Lang D, Hanke ST, Mueller SJX, Sarnighausen E, Vervliet-Scheebaum M, Reski R (2009) Targeted gene knockouts reveal overlapping functions of the five Physcomitrella patens FtsZ isoforms in chloroplast division, chloroplast shaping, cell patterning, plant development, and gravity sensing. Mol Plant 2:1359–1372

    Article  PubMed  CAS  Google Scholar 

  • Miyawaki K, Matsumoto-Kitano M, Kakimoto T (2004) Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis : tissue specificity and regulation by auxin, cytokinin, and nitrate. Plant J 37:128–138

    Article  PubMed  CAS  Google Scholar 

  • Miyawaki K, Tarkowski P, Matsumoto-Kitano M, Kato T, Sato S, Tarkowska D, Tabata S, Sandberg G, Kakimoto T (2006) Roles of Arabidopsis ATP/ADP isopentenyltransferases and tRNA isopentenyltransferases in cytokinin biosynthesis. Proc Natl Acad Sci USA 103:16598–16603

    Article  PubMed  CAS  Google Scholar 

  • Persson BC, Esberg B, Olafsson O, Björk GR (1994) Synthesis and function of isopentenyl adenosine derivatives in tRNA. Biochimie 76:1152–1160

    Article  PubMed  CAS  Google Scholar 

  • Pils B, Heyl A (2009) Unravelling the evolution of cytokinin signalling. Plant Physiol 151:782–791

    Article  PubMed  CAS  Google Scholar 

  • Proost S, van Bel M, Sterck L, Billiau K, van Parys T, van de Peer Y, Vandepoele K (2009) Plaza: a comparative genomics resource to study gene and genome evolution in plants. Plant Cell 21:3718–3731

    Article  PubMed  CAS  Google Scholar 

  • Reddy ASN (2007) Alternative splicing of pre-messenger RNAs in plants in the genomic era. Ann Rev Plant Biol 58:267–294

    Article  CAS  Google Scholar 

  • Rensing SA, Fritzowsky D, Lang D, Reski R (2005) Protein encoding genes in an ancient plant: analysis of codon usage, retained genes and splice sites in a moss, Physcomitrella patens. BMC Genomics 6:43

    Article  PubMed  Google Scholar 

  • Rensing SA, Ick J, Fawcett JA, Lang D, Zimmer A, van de Peer Y, Reski R (2007) An ancient genome duplication contributed to the abundance of metabolic genes in the moss Physcomitrella patens. BMC Evol Biol 7:130

    Article  PubMed  Google Scholar 

  • Rensing SA, Lang D, Zimmer AD, Terry A, Salamov A, Shapiro H, Nishiyama T, Perroud P-F, Lindquist EA, Kamisugi Y, Tanahashi T, Sakakibara K, Fujita T, Oishi K, Shin-I T, Kuroki Y, Toyoda A, Suzuki Y, Hashimoto S-I, Yamaguchi K, Sugano S, Kohara Y, Fujiyama A, Anterola A, Aoki S, Ashton N, Barbazuk WB, Barker E, Bennetzen JL, Blankenship R et al (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319:64–69

    Article  PubMed  CAS  Google Scholar 

  • Reutter K, Atzorn R, Hadeler B, Schmülling T, Reski R (2008) Expression of the bacterial ipt gene in Physcomitrella rescues mutations in budding and in plastid division. Planta 206:196–203

    Article  Google Scholar 

  • Sakakibara H (2006) Cytokinins: activity, biosynthesis, and translocation. Ann Rev Plant Biol 57:431–449

    Article  CAS  Google Scholar 

  • Sakakibara K, Nishiyama T, Deguchi H, Hasebe M (2008) Class 1 KNOX genes are not involved in shoot development in the moss Physcomitrella patens but do function in sporophyte development. Evol Dev 10:555–566

    Article  PubMed  CAS  Google Scholar 

  • Seif E, Hallberg BM (2009) RNA-protein mutually induced fit: structure of Escherichia coli isopentenyl-tRNA transferase in complex with tRNA(Phe). J Biol Chem 284:6600–6604

    Article  PubMed  CAS  Google Scholar 

  • Slusher LB, Gillman EC, Martin NC, Hopper AK (1991) mRNA leader length and initiation codon context determine alternative AUG selection for the yeast gene MOD5. Proc Natl Acad Sci USA 88:9789–9793

    Article  PubMed  CAS  Google Scholar 

  • Spinola M, Galvan A, Pignatiello C, Conti B, Pastorino U, Paroni R, Dragani TA (2005) Identification and functional characterization of the candidate tumor suppressor gene TRIT1 in human lung cancer. Oncogene 24:5502–5509

    Article  PubMed  CAS  Google Scholar 

  • Thelander M, Olsson T, Ronne H (2004) Snf1-related protein kinase 1 is needed for growth in a normal day-night light cycle. EMBO J 23:1900–1910

    Article  PubMed  CAS  Google Scholar 

  • Tsang TH, Buck M, Ames B (1983) Sequence specificity of tRNA-modifying enzymes an analysis of 258 tRNA sequences. Biochim Biophys Acta 741:180–196

    Article  PubMed  CAS  Google Scholar 

  • Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ (2009) Jalview version 2–a multiple sequence alignment editor and analysis workbench. Bioinformatics 25:1189–1191

    Article  PubMed  CAS  Google Scholar 

  • Wise HZ, Saxena IM, Brown RM (2010) Isolation and characterization of the cellulose synthase genes PpCesA6 and PpCesA7 in Physcomitrella patens. Cellulose 18:371–384

    Article  Google Scholar 

  • Yevdakova NA, von Schwartzenberg K (2007) Characterisation of a prokaryote-type tRNA-isopentenyltransferase gene from the moss Physcomitrella patens. Planta 226:683–695

    Article  PubMed  CAS  Google Scholar 

  • Yevdakova NA, Motyka V, Malbeck J, Trávníčková A, Novák O, Strnad M, von Schwartzenberg K (2008) Evidence for importance of tRNA-dependent cytokinin biosynthetic pathway in the moss Physcomitrella patens. J Plant Growth Regul 27:271–281

    Article  CAS  Google Scholar 

  • Zhou C, Huang RH (2008) Crystallographic snapshots of eukaryotic dimethylallyltransferase acting on tRNA: insight into tRNA recognition and reaction mechanism. Proc Natl Acad Sci USA 105:16142–16147

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Mattias Thelander for teaching the culturing of moss, and Hans Ronne for the Uppsala K-1 strain. Anita K. Hopper is thanked for the yeast lines. Grzegorz Furman is thanked for contributing to setting up the tRNA nucleoside analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bjorn Nicander.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patil, G., Nicander, B. Identification of two additional members of the tRNA isopentenyltransferase family in Physcomitrella patens . Plant Mol Biol 82, 417–426 (2013). https://doi.org/10.1007/s11103-013-0072-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-013-0072-x

Keywords

Navigation