Skip to main content
Log in

Proteome changes in wild and modern wheat leaves upon drought stress by two-dimensional electrophoresis and nanoLC-ESI–MS/MS

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

To elucidate differentially expressed proteins and to further understand post-translational modifications of transcripts, full leaf proteome profiles of two wild emmer (Triticum turgidum ssp. dicoccoides TR39477 and TTD22) and one modern durum wheat (Triticum turgidum ssp. durum cv. Kızıltan) genotypes were compared upon 9-day drought stress using two-dimensional gel electrophoresis and nano-scale liquid chromatographic electrospray ionization tandem mass spectrometry methods. The three genotypes compared exhibit distinctive physiological responses to drought as previously shown by our group. Results demonstrated that many of the proteins were common in both wild emmer and modern wheat proteomes; of which, 75 were detected as differentially expressed proteins. Several proteins identified in all proteomes exhibited drought regulated patterns of expression. A number of proteins were observed with higher expression levels in response to drought in wild genotypes compared to their modern relative. Eleven protein spots with low peptide matches were identified as candidate unique drought responsive proteins. Of the differentially expressed proteins, four were selected and further analyzed by quantitative real-time PCR at the transcriptome level to compare with the proteomic data. The present study provides protein level differences in response to drought in modern and wild genotypes of wheat that may account for the differences of the overall responses of these genotypes to drought. Such comparative proteomics analyses may aid in the better understanding of complex drought response and may suggest candidate genes for molecular breeding studies to improve tolerance against drought stress and, thus, to enhance yields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdalla KO, Rafudeen MS (2012) Analysis of the nuclear proteome of the resurrection plant Xerophyta viscosa in response to dehydration stress using iTRAQ with 2DLC and tandem mass spectrometry. J Proteomics 75(8):2361–2374. doi:10.1016/j.jprot.2012.02.006

    Article  PubMed  CAS  Google Scholar 

  • Ahuja I, de Vos RC, Bones AM, Hall RD (2010) Plant molecular stress responses face climate change. Trends Plant Sci 15(12):664–674. doi:10.1016/j.tplants.2010.08.002

    Article  PubMed  CAS  Google Scholar 

  • Akpinar BA, Avsar B, Lucas SJ, Budak H (2012) Plant abiotic stress signaling. Plant Signal Behav 7(11):1450–1455. doi:10.4161/psb.21894

    Google Scholar 

  • Bergman P, Edqvist J, Farbos I, Glimelius K (2000) Male-sterile tobacco displays abnormal mitochondrial atp1 transcript accumulation and reduced floral ATP/ADP ratio. Plant Mol Biol 42(3):531–544

    Article  PubMed  CAS  Google Scholar 

  • Bhullar NK, Street K, Mackay M, Yahiaoui N, Keller B (2009) Unlocking wheat genetic resources for the molecular identification of previously undescribed functional alleles at the Pm3 resistance locus. Proc Natl Acad Sci USA 106(23):9519–9524. doi:10.1073/pnas.0904152106

    Article  PubMed  CAS  Google Scholar 

  • Budak H, Kasap Z, Shearman RC, Dweikat I, Sezerman U, Mahmood A (2006) Molecular characterization of cDNA encoding resistance gene-like sequences in Buchloe dactyloides. Mol Biotechnol 34(3):293–301. doi:10.1385/MB:34:3:293

    Article  PubMed  CAS  Google Scholar 

  • Caruso G, Cavaliere C, Guarino C, Gubbiotti R, Foglia P, Lagana A (2008) Identification of changes in Triticum durum L. leaf proteome in response to salt stress by two-dimensional electrophoresis and MALDI-TOF mass spectrometry. Anal Bioanal Chem 391(1):381–390. doi:10.1007/s00216-008-2008-x

    Google Scholar 

  • Caruso G, Cavaliere C, Foglia P, Gubbiotti R, Samperi R, Laganà A (2009) Analysis of drought responsive proteins in wheat (Triticum durum) by 2D-PAGE and MALDI-TOF mass spectrometry. Plant Sci 177(6):570–576. doi:10.1016/j.plantsci.2009.08.007

    Article  CAS  Google Scholar 

  • Chantret N, Salse J, Sabot F, Rahman S, Bellec A, Laubin B, Dubois I, Dossat C, Sourdille P, Joudrier P, Gautier MF, Cattolico L, Beckert M, Aubourg S, Weissenbach J, Caboche M, Bernard M, Leroy P, Chalhoub B (2005) Molecular basis of evolutionary events that shaped the hardness locus in diploid and polyploid wheat species (Triticum and Aegilops). Plant Cell 17(4):1033–1045. doi:10.1105/tpc.104.029181

    Article  PubMed  CAS  Google Scholar 

  • Chinnusamy V, Schumaker K, Zhu JK (2004) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J Exp Bot 55(395):225–236. doi:10.1093/jxb/erh005

    Article  PubMed  CAS  Google Scholar 

  • Chinnusamy V, Zhu J, Zhu JK (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 12:444–451. doi:10.1016/j.tplants.2007.07.002

    Google Scholar 

  • Cruz de Carvalho MH (2008) Drought stress and reactive oxygen species: production, scavenging and signaling. Plant Signal Behav 3(3):156–165

    Article  PubMed  Google Scholar 

  • Cui S, Huang F, Wang J, Ma X, Cheng Y, Liu J (2005) A proteomic analysis of cold stress responses in rice seedlings. Proteomics 5(12):3162–3172. doi:10.1002/pmic.200401148

    Article  PubMed  CAS  Google Scholar 

  • Demirevska K, Zasheva D, Dimitrov R, Simova-Stoilova L, Stamenova M, Feller U (2009) Drought stress effects on Rubisco in wheat: changes in the Rubisco large subunit. Acta Physiol Plant 31:1129–1138. doi:10.1007/s11738-009-0331-2

    Article  CAS  Google Scholar 

  • Dixon DP, Skipsey M, Edwards R (2010) Roles for glutathione transferases in plant secondary metabolism. Phytochemistry 71(4):338–350. doi:10.1016/j.phytochem.2009.12.012

    Article  PubMed  CAS  Google Scholar 

  • Ergen NZ, Budak H (2009) Sequencing over 13 000 expressed sequence tags from six subtractive cDNA libraries of wild and modern wheats following slow drought stress. Plant, Cell Environ 32(3):220–236. doi:10.1111/j.1365-3040.2008.01915.x

    Article  CAS  Google Scholar 

  • Ergen NZ, Dinler G, Shearman RC, Budak H (2007) Identifying, cloning and structural analysis of differentially expressed genes upon Puccinia infection of Festuca rubra var. rubra. Gene 393(1–2):145–152

    Article  PubMed  CAS  Google Scholar 

  • Ergen NZ, Thimmapuram J, Bohnert HJ, Budak H (2009) Transcriptome pathways unique to dehydration tolerant relatives of modern wheat. Funct Integr Genomics 9(3):377–396. doi:10.1007/s10142-009-0123-1

    Article  PubMed  CAS  Google Scholar 

  • Fan P, Feng J, Jiang P, Chen X, Bao H, Nie L, Jiang D, Lv S, Kuang T, Li Y (2011) Coordination of carbon fixation and nitrogen metabolism in Salicornia europaea under salinity: comparative proteomic analysis on chloroplast proteins. Proteomics 11(22):4346–4367. doi:10.1002/pmic.201100054

    Article  PubMed  CAS  Google Scholar 

  • Ferro M, Salvi D, Brugiere S, Miras S, Kowalski S, Louwagie M, Garin J, Joyard J, Rolland N (2003) Proteomics of the chloroplast envelope membranes from Arabidopsis thaliana. Mol Cell Proteomics 2(5):325–345. doi:10.1074/mcp.M300005-MCP200

    PubMed  CAS  Google Scholar 

  • Flexas J, Medrano H (2002) Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Ann Bot 89(2):183–189

    Article  PubMed  CAS  Google Scholar 

  • Galle A, Csiszar J, Secenji M, Guoth A, Cseuz L, Tari I, Gyorgyey J, Erdei L (2009) Glutathione transferase activity and expression patterns during grain filling in flag leaves of wheat genotypes differing in drought tolerance: response to water deficit. J Plant Physiol 166(17):1878–1891. doi:10.1016/j.jplph.2009.05.016

    Article  PubMed  CAS  Google Scholar 

  • Gao L, Yan X, Li X, Guo G, Hu Y, Ma W, Yan Y (2011) Proteome analysis of wheat leaf under salt stress by two-dimensional difference gel electrophoresis (2D-DIGE). Phytochemistry 72(10):1180–1191. doi:10.1016/j.phytochem.2010.12.008

    Article  PubMed  CAS  Google Scholar 

  • Ge P, Ma C, Wang S, Gao L, Li X, Guo G, Ma W, Yan Y (2012) Comparative proteomic analysis of grain development in two spring wheat varieties under drought stress. Anal Bioanal Chem 402(3):1297–1313. doi:10.1007/s00216-011-5532-z

    Article  PubMed  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Polyamines and abiotic stress tolerance in plants. Plant Signal Behav 5(1):26–33

    Article  PubMed  CAS  Google Scholar 

  • Groppa MD, Benavides MP (2008) Polyamines and abiotic stress: recent advances. Amino Acids 34(1):35–45. doi:10.1007/s00726-007-0501-8

    Article  PubMed  CAS  Google Scholar 

  • Guo G, Ge P, Ma C, Li X, Lv D, Wang S, Ma W, Yan Y (2012) Comparative proteomic analysis of salt response proteins in seedling roots of two wheat varieties. J Proteomics 75(6):1867–1885. doi:10.1016/j.jprot.2011.12.032

    Article  PubMed  CAS  Google Scholar 

  • Hrmova M, Fincher GB (2001) Structure-function relationships of beta-d-glucan endo- and exohydrolases from higher plants. Plant Mol Biol 47(1–2):73–91

    Article  PubMed  CAS  Google Scholar 

  • Huang XY, Chao DY, Gao JP, Zhu MZ, Shi M, Lin HX (2009) A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Genes Dev 23(15):1805–1817. doi:10.1101/gad.1812409

    Article  PubMed  CAS  Google Scholar 

  • Ingram J (2011) A food systems approach to researching food security and its interactions with global environmental change. Food Secur 3(4):417–431. doi:10.1007/s12571-011-0149-9

    Article  Google Scholar 

  • Kantar M, Unver T, Budak H (2010) Regulation of barley miRNAs upon dehydration stress correlated with target gene expression. Funct Integr Genomics 10(4):493–507. doi:10.1007/s10142-010-0181-4

    Article  PubMed  CAS  Google Scholar 

  • Kantar M, Lucas SJ, Budak H (2011a) Drought stress: molecular genetics and genomics approaches. In: Turkan I (ed) Advances in botanical research, vol 57. Plant responses to drought and salinity stress: developments in a post-genomic era. Elsevier, Burlington, pp 445–493

    Chapter  Google Scholar 

  • Kantar M, Lucas SJ, Budak H (2011b) miRNA expression patterns of Triticum dicoccoides in response to shock drought stress. Planta 233(3):471–484. doi:10.1007/s00425-010-1309-4

    Article  PubMed  CAS  Google Scholar 

  • Kausar R, Arshad M, Shahzad A, Komatsu S (2012) Proteomics analysis of sensitive and tolerant barley genotypes under drought stress. Amino Acids. doi:10.1007/s00726-012-1338-3

    PubMed  Google Scholar 

  • Kong FJ, Oyanagi A, Komatsu S (2010) Cell wall proteome of wheat roots under flooding stress using gel-based and LC MS/MS-based proteomics approaches. Biochim Biophys Acta 1804(1):124–136. doi:10.1016/j.bbapap.2009.09.023

    Article  PubMed  CAS  Google Scholar 

  • Lee H, Xiong L, Gong Z, Ishitani M, Stevenson B, Zhu J-K (2001) The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleo–cytoplasmic partitioning. Genes Dev 15:912–924. doi:10.1101/gad.866801

    Google Scholar 

  • Liu JH, Kitashiba H, Wang J, Ban Y, Moriguchi T (2007) Polyamines and their ability to provide environmental stress tolerance to plants. Plant Biotechnol J 24:117–126

    Article  CAS  Google Scholar 

  • Lobell DB, Schlenker W, Costa-Roberts J (2011) Climate trends and global crop production since 1980. Science 333(6042):616–620. doi:10.1126/science.1204531

    Article  PubMed  CAS  Google Scholar 

  • Lucas S, Dogan E, Budak H (2011a) TMPIT1 from wild emmer wheat: first characterisation of a stress-inducible integral membrane protein. Gene 483(1–2):22–28. doi:10.1016/j.gene.2011.05.003

    Article  PubMed  CAS  Google Scholar 

  • Lucas S, Durmaz E, Akpinar BA, Budak H (2011b) The drought response displayed by a DRE-binding protein from Triticum dicoccoides. Plant Physiol Biochem 49(3):346–351. doi:10.1016/j.plaphy.2011.01.016

    Article  PubMed  CAS  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell Environ 33(4):453–467. doi:10.1111/j.1365-3040.2009.02041.x

    Article  CAS  Google Scholar 

  • Mohammadi M, Kav NN, Deyholos MK (2007) Transcriptional profiling of hexaploid wheat (Triticum aestivum L.) roots identifies novel, dehydration-responsive genes. Plant Cell Environ 30(5):630–645. doi:10.1111/j.1365-3040.2007.01645.x

    Google Scholar 

  • Mohapatra PK, Patro L, Raval MK, Ramaswamy NK, Biswal UC, Biswal B (2010) Senescence-induced loss in photosynthesis enhances cell wall beta-glucosidase activity. Physiol Plant 138(3):346–355. doi:10.1111/j.1399-3054.2009.01327.x

    Article  PubMed  CAS  Google Scholar 

  • Moller AL, Pedas P, Andersen B, Svensson B, Schjoerring JK, Finnie C (2011) Responses of barley root and shoot proteomes to long-term nitrogen deficiency, short-term nitrogen starvation and ammonium. Plant, Cell Environ 34(12):2024–2037. doi:10.1111/j.1365-3040.2011.02396.x

    Article  Google Scholar 

  • Moolna A, Bowsher CG (2010) The physiological importance of photosynthetic ferredoxin NADP + oxidoreductase (FNR) isoforms in wheat. J Exp Bot 61(10):2669–2681. doi:10.1093/jxb/erq101

    Article  PubMed  CAS  Google Scholar 

  • Narita Y, Taguchi H, Nakamura T, Ueda A, Shi WM, Takabe T (2004) Characterization of the salt-inducible methionine synthase from barley leaves. Plant Sci 167(5):1009–1016. doi:10.1016/j.plantsci.2004.05.039

    Article  CAS  Google Scholar 

  • Navarre DA, Wendehenne D, Durner J, Noad R, Klessig DF (2000) Nitric oxide modulates the activity of tobacco aconitase. Plant Physiol 122(2):573–582

    Article  PubMed  CAS  Google Scholar 

  • Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT (2002) Hydrogen peroxide and nitric oxide as signalling molecules in plants. J Exp Bot 53(372):1237–1247

    Article  PubMed  CAS  Google Scholar 

  • Nishizawa Y, Saruta M, Nakazono K, Nishio Z, Soma M, Yoshida T, Nakajima E, Hibi T (2003) Characterization of transgenic rice plants over-expressing the stress-inducible beta-glucanase gene Gns1. Plant Mol Biol 51(1):143–152

    Article  PubMed  CAS  Google Scholar 

  • Nogues S, Baker NR (2000) Effects of drought on photosynthesis in Mediterranean plants grown under enhanced UV-B radiation. J Exp Bot 51(348):1309–1317

    Article  PubMed  CAS  Google Scholar 

  • Parker R, Flowers TJ, Moore AL, Harpham NV (2006) An accurate and reproducible method for proteome profiling of the effects of salt stress in the rice leaf lamina. J Exp Bot 57(5):1109–1118. doi:10.1093/jxb/erj134

    Article  PubMed  CAS  Google Scholar 

  • Peng Z, Wang M, Li F, Lv H, Li C, Xia G (2009) A proteomic study of the response to salinity and drought stress in an introgression strain of bread wheat. Mol Cell Proteomics 8(12):2676–2686. doi:10.1074/mcp.M900052-MCP200

    Article  PubMed  CAS  Google Scholar 

  • Petrov VD, Van Breusegem F (2012) Hydrogen peroxide-a central hub for information flow in plant cells. AoB Plants 2012:pls014. doi:10.1093/aobpla/pls014

  • Qin F, Sakuma Y, Tran LSP et al (2008) Arabidopsis DREB2A-interacting proteins function as RING E3 ligases and negatively regulate plant drought stress–responsive gene expression. Plant Cell 20:1693–1707. doi:10.1105/tpc.107.057380

    Google Scholar 

  • Ravanel S, Block MA, Rippert P, Jabrin S, Curien G, Rebeille F, Douce R (2004) Methionine metabolism in plants: chloroplasts are autonomous for de novo methionine synthesis and can import S-adenosylmethionine from the cytosol. J Biol Chem 279(21):22548–22557. doi:10.1074/jbc.M313250200

    Article  PubMed  CAS  Google Scholar 

  • Riccardi F, Gazeau P, de Vienne D, Zivy M (1998) Protein changes in response to progressive water deficit in maize. Quantitative variation and polypeptide identification. Plant Physiol 117(4):1253–1263

    Article  PubMed  CAS  Google Scholar 

  • Salekdeh GH, Siopongco J, Wade LJ, Ghareyazie B, Bennett J (2002) Proteomic analysis of rice leaves during drought stress and recovery. Proteomics 2(9):1131–1145. doi:10.1002/1615-9861(200209)2:9<1131:AID-PROT1131>3.0.CO;2-1

    Article  PubMed  CAS  Google Scholar 

  • Sappl PG, Heazlewood JL, Millar AH (2004) Untangling multi-gene families in plants by integrating proteomics into functional genomics. Phytochemistry 65(11):1517–1530. doi:10.1016/j.phytochem.2004.04.021

    Article  PubMed  CAS  Google Scholar 

  • Shin KH, Kamal AHM, Cho K, Choi JS, Jin Y, Paek NC, Lee YW, Lee JK, Park JC, Kim HT, Heo HY, Woo SH (2011) Defense proteins are induced in wheat spikes exposed to Fusarium graminearum. Plant Omics J 4(5):270–277

    CAS  Google Scholar 

  • Sinclair TR (2011) Challenges in breeding for yield increase for drought. Trends Plant Sci 16(6):289–293. doi:10.1016/j.tplants.2011.02.008

    Article  PubMed  CAS  Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277(5329):1063–1066

    Article  PubMed  CAS  Google Scholar 

  • Townsend DM, Manevich Y, He L, Hutchens S, Pazoles CJ, Tew KD (2009) Novel role for glutathione S-transferase pi. Regulator of protein S-Glutathionylation following oxidative and nitrosative stress. J Biol Chem 284(1):436–445. doi:10.1074/jbc.M805586200

    Article  PubMed  CAS  Google Scholar 

  • Wang MC, Peng ZY, Li CL, Li F, Liu C, Xia GM (2008) Proteomic analysis on a high salt tolerance introgression strain of Triticum aestivum/Thinopyrum ponticum. Proteomics 8(7):1470–1489. doi:10.1002/pmic.200700569

    Article  PubMed  CAS  Google Scholar 

  • Wingler A, Lea PJ, Quick WP, Leegood RC (2000) Photorespiration: metabolic pathways and their role in stress protection. Philos Trans R Soc Lond B Biol Sci 355(1402):1517–1529. doi:10.1098/rstb.2000.0712

    Article  PubMed  CAS  Google Scholar 

  • Yan S, Tang Z, Su W, Sun W (2005) Proteomic analysis of salt stress-responsive proteins in rice root. Proteomics 5(1):235–244. doi:10.1002/pmic.200400853

    Article  PubMed  CAS  Google Scholar 

  • Yoda H, Hiroi Y, Sano H (2006) Polyamine oxidase is one of the key elements for oxidative burst to induce programmed cell death in tobacco cultured cells. Plant Physiol 142(1):193–206. doi:10.1104/pp.106.080515

    Article  PubMed  CAS  Google Scholar 

  • Yun SJ, Martin DJ, Gengenbach BG, Rines HW, Somers DA (1993) Sequence of a (1-3,1-4)-beta-glucanase cDNA from oat. Plant Physiol 103(1):295–296. doi:10.1104/Pp.103.1.295

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Guo C, Li C, Xiao K (2008) Cloning, characterization and expression analysis of two superoxide dismutase (SOD) genes in wheat (Triticum aestivum L.). Frontiers Agric China 2(2):141–149. doi:10.1007/s11703-008-0023-5

    Article  Google Scholar 

  • Zhang M, Li G, Huang W, Bi T, Chen G, Tang Z, Su W, Sun W (2010) Proteomic study of Carissa spinarum in response to combined heat and drought stress. Proteomics 10(17):3117–3129. doi:10.1002/pmic.200900637

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Authors acknowledge TUBITAK for the financial support. We would like to thank to Dr. Megan Bowman for reviewing the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hikmet Budak.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Budak, H., Akpinar, B.A., Unver, T. et al. Proteome changes in wild and modern wheat leaves upon drought stress by two-dimensional electrophoresis and nanoLC-ESI–MS/MS. Plant Mol Biol 83, 89–103 (2013). https://doi.org/10.1007/s11103-013-0024-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-013-0024-5

Keywords

Navigation