Skip to main content
Log in

Fatty acid beta-oxidation in germinating Arabidopsis seeds is supported by peroxisomal hydroxypyruvate reductase when malate dehydrogenase is absent

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Peroxisomal malate dehydrogenase (PMDH) oxidises NADH produced by fatty acid beta-oxidation during seed germination and seedling growth. Arabidopsis thaliana beta-oxidation mutants exhibit seed dormancy or impaired seed germination and failure of seedlings to degrade triacylglycerol (TAG), but the pmdh1 pmdh2 null mutant germinates readily and degrades TAG slowly during seedling growth. We reasoned that in the pmdh1 pmdh2 mutant an alternative means of oxidising NADH operates to allow a slow rate of beta-oxidation, such as NADH and NAD+ transport across the peroxisomal membrane or activity of another peroxisomal oxido-reductase. Here we show that peroxisomal hydroxypyruvate reductase (HPR) is present in germinating seeds and although knocking out HPR has little effect on germination and early seedling growth, when knocked out in combination with PMDH it exacerbates the pmdh1 pmdh2 phenotype. It greatly increases the proportion of dormant seeds and reduces the rate of seed germination. Seedlings have increased sucrose dependence and resistance to 2,4-dichlorophenoxybutyric acid (2,4-DB), and slower rate of TAG breakdown. When PMDH is absent, malate is lower in amount in germinating seeds and when HPR is also absent, serine (the immediate precursor of hydroxypyruvate) is much higher. These results indicate that HPR can oxidise NADH at sufficient rate in the absence of PMDH to support beta-oxidation and hence seed germination. We conclude that while HPR normally plays little role in seed germination our results support the growing body of evidence that peroxisomal NADH cannot be exported to the cytosol for oxidation but is oxidised by resident oxido-reductases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    Google Scholar 

  • Antonenkov VD, Hiltunen JK (2006) Peroxisomal membrane permeability and solute transfer. Biochim Biophys Acta 1763:1697–1706

    Article  CAS  PubMed  Google Scholar 

  • Antonenkov VD, Sormunen RT, Hiltunen JK (2004) The rat liver peroxisomal membrane forms a permeability barrier for cofactors but not for small metabolites in vitro. J Cell Sci 117:5633–5642

    Article  CAS  PubMed  Google Scholar 

  • Arai Y, Hayashi M, Nishimura M (2008) Proteomic identification and characterization of a novel peroxisomal adenine nucleotide transporter supplying ATP for fatty acid β-oxidation in soybean and Arabidopsis. Plant Cell 20:3227–3240

    Article  CAS  PubMed  Google Scholar 

  • Baker A, Graham IA, Holdsworth M, Smith SM, Theodoulou FL (2006) Chewing the fat: beta-oxidation in signalling and development. Trends Plant Sci 11:124–132

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein–dye-binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cornah JE, Germain V, Ward JL, Beale MH, Smith SM (2004) Lipid utilization, gluconeogenesis, and seedling growth in Arabidopsis mutants lacking the glyoxylate cycle enzyme malate synthase. J Biol Chem 41:42916–42923

    Article  Google Scholar 

  • Cousins AB, Pracharoenwattana I, Zhou W, Smith SM, Badger MR (2008) Peroxisomal malate dehydrogenase is not essential for photorespiration in Arabidopsis but its absence causes an increase in the stoichiometry of photorespiratory CO2 release. Plant Physiol 148:786–795

    Article  CAS  PubMed  Google Scholar 

  • Eastmond P (2007) MONODEHYROASCORBATE REDUCTASE4 is required for seed storage oil hydrolysis and postgerminative growth in Arabidopsis. Plant Cell 19:1376–1387

    Article  CAS  PubMed  Google Scholar 

  • Eastmond PJ, Germain V, Lange PR, Bryce JH, Smith SM, Graham IA (2000) Postgerminative growth and lipid catabolism in oilseeds lacking the glyoxylate cycle. Proc Natl Acad Sci USA 97:5669–5674

    Article  CAS  PubMed  Google Scholar 

  • Eubel H, Meyer EH, Taylor NL, Bussell JD, O’Toole N, Heazlewood JL, Castleden I, Small ID, Smith SM, Millar AH (2008) Novel proteins, putative membrane transporters and an integrated metabolic network are revealed by quantitative proteomic analysis of Arabidopsis cell culture peroxisomes. Plant Physiol 148:1809–1829

    Article  CAS  PubMed  Google Scholar 

  • Footitt S, Slocombe SP, Larner V, Kurup S, Wu Y, Larson T, Graham I, Baker A, Holdsworth M (2002) Control of germination and lipid mobilization by COMATOSE, the Arabidopsis homologue of human ALDP. EMBO J 21:2912–2922

    Article  CAS  PubMed  Google Scholar 

  • Footitt S, Marquez J, Schmuths H, Baker A, Theodoulou FL, Holdsworth M (2006) Analysis of the role of COMATOSE and peroxisomal beta-oxidation in the determination of germination potential in Arabidopsis. J Exp Bot 57:2805–2814

    Article  CAS  PubMed  Google Scholar 

  • Heazlewood JL, Verboom RE, Tonti-Filippini J, Small I, Millar AH (2007) SUBA: the Arabidopsis subcellular database. Nucleic Acids Res 35:D213–D218

    Article  CAS  PubMed  Google Scholar 

  • Kunze M, Pracharoenwattana I, Smith SM, Hartig A (2006) A central role for the peroxisomal membrane in glyoxylate cycle function. Biochim Biophys Acta 1763:1441–1452

    Article  CAS  PubMed  Google Scholar 

  • Linka N, Theodoulou F, Haslam R, Linka M, Napier J, Neuhaus H, Weber A (2008) Peroxisomal ATP import is essential for seedling development in Arabidopsis thaliana. Plant Cell 20:3241–3257

    Article  CAS  PubMed  Google Scholar 

  • Lisenbee CS, Lingard MJ, Trelease RN (2005) Arabidopsis peroxisomes possess functionally redundant membrane and matrix isoforms of monodehydroascorbate reductase. Plant J 43:900–914

    Article  CAS  PubMed  Google Scholar 

  • Mano S, Hayashi M, Kondo M, Nishimura M (1997) Hydroxypyruvate reductase with a carboxy-terminal targeting signal to microbodies is expressed in Arabidopsis. Plant Cell Physiol 38:449–455

    CAS  PubMed  Google Scholar 

  • Mettler IJ, Beevers H (1980) Oxidation of NADH in glyoxysomes by a malate-aspartate shuttle. Plant Physiol 66:555–560

    Article  CAS  PubMed  Google Scholar 

  • Mullen RT, Trelease RN (2006) The ER-peroxisome connection in plants: development of the “ER semi-autonomous peroxisome maturation and replication” model for plant peroxisome biogenesis. Biochim Biophys Acta 1763:1655–1668

    Article  CAS  PubMed  Google Scholar 

  • Pracharoenwattana I, Cornah JE, Smith SM (2005) Arabidopsis peroxisomal citrate synthase is required for fatty acid respiration and seed germination. Plant Cell 17:2037–2048

    Article  CAS  PubMed  Google Scholar 

  • Pracharoenwattana I, Cornah JE, Smith SM (2007) Arabidopsis peroxisomal malate dehydrogenase functions in beta-oxidation but not in the glyoxylate cycle. Plant J 50:381–390

    Article  CAS  PubMed  Google Scholar 

  • Reumann S, Weber APM (2006) Plant peroxisomes respire in the light: some gaps of the photorespiratory C2 cycle have become filled—others remain. Biochim Biophys Acta 1763:1496–1510

    Article  CAS  PubMed  Google Scholar 

  • Reumann S, Maier E, Benz R, Heldt HW (1995) The membrane of leaf peroxisomes contains a porin-like channel. J Biol Chem 270:17559–17565

    Article  CAS  PubMed  Google Scholar 

  • Reumann S, Maier E, Benz R, Heldt HW (1996) A specific porin is involved in the malate shuttle of leaf peroxisomes. Biochem Soc Trans 24:754–757

    CAS  PubMed  Google Scholar 

  • Reumann S, Bettermann M, Benz R, Heldt HW (1997) Evidence for the presence of a porin in the membrane of glyoxysomes of castor bean. Plant Physiol 115:891–899

    CAS  PubMed  Google Scholar 

  • Reumann S, Maier E, Heldt HW, Benz R (1998) Permeability properties of the porin of spinach leaf peroxisomes. Eur J Biochem 251:359–366

    Article  CAS  PubMed  Google Scholar 

  • Reumann S, Babujee L, Ma C, Wienkoop S, Siemsen T, Antonicelli GE, Rasche N, Lüder F, Weckwerth WOJ (2007) Proteome analysis of Arabidopsis leaf peroxisomes reveals novel targeting peptides, metabolic pathways, and defense mechanisms. Plant Cell 19:3170–3193

    Article  CAS  PubMed  Google Scholar 

  • Rottensteiner H, Theodoulou FL (2006) The ins and outs of peroxisomes: co-ordination of membrane transport and peroxisomal metabolism. Biochim Biophys Acta 1763:1527–1540

    Article  CAS  PubMed  Google Scholar 

  • Sherson SM, Hemmann G, Wallace G, Forbes S, Germain V, Stadler R, Bechtold N, Sauer N, Smith SM (2000) Monosaccharide/proton symporter AtSTP1 plays a major role in uptake and response of Arabidopsis seeds and seedlings to sugars. Plant J 24:849–857

    Article  CAS  PubMed  Google Scholar 

  • Somerville CR (2001) An early Arabidopsis demonstration. Resolving a few issues concerning photorespiration. Plant Physiol 125:20–24

    Article  CAS  PubMed  Google Scholar 

  • Tabak HF, Hoepfner D, Zand AVD, Geuze HJ, Braakman I, Huynen MA (2006) Formation of peroxisomes: present and past. Biochim Biophys Acta 1763:1647–1654

    Article  CAS  PubMed  Google Scholar 

  • Timm S, Nunes-Nesi A, Pärnik T, Morgenthal K, Wienkoop S, Keerberg O, Weckwerth W, Kleczkowski LA, Fernie AR, Bauwe H (2008) A cytosolic pathway for the conversion of hydroxypyruvate to glycerate during photorespiration in Arabidopsis. Plant Cell 20:2848–2859

    Article  CAS  PubMed  Google Scholar 

  • Titus DE, Hondred D, Becker WM (1983) Purification and characterization of hydroxypyruvate reductase from cucumber cotyledons. Plant Physiol 72:402–408

    Article  CAS  PubMed  Google Scholar 

  • van Roermund CW, Elgersma Y, Singh N, Wanders RJ, Tabak HF (1995) The membrane of peroxisomes in Saccharomyces cerevisiae is impermeable to NAD(H) and acetyl-CoA under in vivo conditions. EMBO J 14:3480–3486

    PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Australian Research Council awards FF0457721 and CE0561495 and the Centres of Excellence program of the Government of Western Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven M. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pracharoenwattana, I., Zhou, W. & Smith, S.M. Fatty acid beta-oxidation in germinating Arabidopsis seeds is supported by peroxisomal hydroxypyruvate reductase when malate dehydrogenase is absent. Plant Mol Biol 72, 101–109 (2010). https://doi.org/10.1007/s11103-009-9554-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-009-9554-2

Keywords

Navigation