Skip to main content
Log in

AKINβ3, a plant specific SnRK1 protein, is lacking domains present in yeast and mammals non-catalytic β-subunits

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The SNF1/AMPK/SnRK1 heterotrimeric kinase complex is involved in the adaptation of cellular metabolism in response to diverse stresses in yeast, mammals and plants. Following a model proposed in yeast, the kinase targets are likely to bind the complex via the non-catalytic β-subunits. These proteins currently identified in yeast, mammals and plants present a common structure with two conserved interacting domains named Kinase Interacting Sequence (KIS) and Association with SNF1 Complex (ASC), and a highly variable N-terminal domain. In this paper we describe the characterisation of AKINβ3, a novel protein related to AKINβ subunits of Arabidopsis thaliana, containing a truncated KIS domain and no N-terminal extension. Interestingly the missing region of the KIS domain corresponds to the glycogen-binding domain (β-GBD) identified in the mammalian AMPKβ1. In spite of its unusual features, AKINβ3 complements the yeast sip1Δsip2Δgal83Δ mutant. Moreover, interactions between AKINβ3 and other AKIN complex subunits from A. thaliana were detected by two-hybrid experiments and in vitro binding assays. Taken together these data demonstrate that AKINβ3 is a β-type subunit. A search for β-type subunits revealed the existence of β3-type proteins in other plant species. Furthermore, we suggest that the AKINβ3-type subunits could be plant specific since no related sequences have been found in any of the other completely sequenced genomes. These data suggest the existence of novel SnRK1 complexes including AKINβ3-type subunits, involved in several functions among which some could be plant specific.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • S.F. Altschul W. Gish W. Miller E.W. Myers D.J. Lipman (1990) ArticleTitleBasic local alignment search tool J. Mol. Biol. 215 403–410

    Google Scholar 

  • R.P. Bhalerao K. Salchert L. Bako L. Okresz L. Szabados T. Muranaka Y. Machida J. Schell C. Koncz (1999) ArticleTitleRegulatory interaction of PRL1 WD protein with Arabidopsis SNF1-like protein kinases Proc. Natl. Acad. Sci. USA 96 5322–5327

    Google Scholar 

  • J.P. Bouly L. Gissot P. Lessard M. Kreis M. Thomas (1999) ArticleTitleArabidopsis thaliana proteins related to the yeast SIP and SNF4 interact with AKINalpha1, an SNF1-like protein kinase Plant J. 18 541–550

    Google Scholar 

  • K.J. Bradford A.B. Downie O.H. Gee V. Alvarado H. Yang P. Dahal (2003) ArticleTitleAbscissic acid and gibberellin differentially regulate expression of genes of the SNF1-related kinase complex in tomato seeds Plant Physiol. 132 1560–1576

    Google Scholar 

  • M. Carlson (1999) ArticleTitleGlucose repression in yeast Curr. Opin. Microbiol. 2 202–207

    Google Scholar 

  • M. Carlson B.C. Osmond D. Botstein (1981) ArticleTitleMutants of yeast defective in sucrose utilization Genetics 98 25–40

    Google Scholar 

  • S.J. Clough A.F. Bent (1998) ArticleTitleFloral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana Plant J. 16 735–743

    Google Scholar 

  • J.R. Erickson M. Johnston (1993) ArticleTitleGenetic and molecular characterization of GAL83: its interaction and similarities with other genes involved in glucose repression in Saccharomyces cerevisiae Genetics 135 655–664

    Google Scholar 

  • A. Ferrando Z. Koncz-Kalman R. Farras A. Tiburcio J. Schell C. Koncz (2001) ArticleTitleDetection of in vivo protein interactions between Snf1-related kinase subunits with intron-tagged epitope-labelling in plants cells Nucleic Acids Res. 29 3685–3693

    Google Scholar 

  • L. Florea G. Hartzell Z. Zhang M.G. Rubin W. Miller (1998) ArticleTitleA computer program for aligning a cDNA sequence with a genomic DNA sequence Genome Res. 8 967–974

    Google Scholar 

  • A.P. Fordham-Skelton P. Chilley V. Lumbreras S. Reignoux T.R. Fenton C. Dahm M. Pages J.A. Gatehouse (2002) ArticleTitleA novel higher plant protein tyrosine phosphatase interacts with SNF1-related protein kinases via a KIS (kinase interaction sequence) domain Plant J. 29 705–715

    Google Scholar 

  • G. Gao C.S. Fernandez D. Stapleton A.S. Auster J. Widmer J.R. Dyck B.E. Kemp L.A. Witters (1996) ArticleTitleNon-catalytic beta- and gamma-subunit isoforms of the 5′-AMP-activated protein kinase J. Biol. Chem. 271 8675–8681

    Google Scholar 

  • R.D. Gietz R.H. Schiestl A.R. Willems R.A. Woods (1995) ArticleTitleStudies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure Yeast 11 355–360

    Google Scholar 

  • N.G. Halford J.P. Bouly M. Thomas (2000) ArticleTitleSNF1-related protein kinases (SnRKs): Regulators at the heart of the control of carbon metabolism and partitioning, Adv Bot. Res. Incorp. Adv. Plant Path. 32 405–434

    Google Scholar 

  • L. Hao H. Wang G. Sunter D.M. Bisaro (2003) ArticleTitleGeminivirus AL2 and L2 proteins interact with and inactivate SNF1 kinase Plant Cell 15 1034–1048

    Google Scholar 

  • D.G. Hardie D. Carling M. Carlson (1998) ArticleTitleThe AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell Annu. Rev. Biochem. 67 821–855

    Google Scholar 

  • J.W. Harper G.R. Adami N. Wei K. Keyomarsi S.J. Elledge (1993) ArticleTitleThe p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases Cell 75 805–816 Occurrence Handle10.1016/0092-8674(93)90499-G Occurrence Handle1:CAS:528:DyaK2cXhtVShsLk%3D Occurrence Handle8242751

    Article  CAS  PubMed  Google Scholar 

  • S.M. Hebsgaard P.G. Korning N. Tolstrup J. Engelbrecht P. Rouze S. Brunak (1996) ArticleTitleSplice site prediction in Arabidopsis thaliana pre-mRNA by combining local and global sequence information Nucleic Acids Res. 24 3439–3452

    Google Scholar 

  • E.R. Hudson D.A. Pan J. James J.M. Lucocq S.A. Hawley K.A. Green O. Baba T. Terashima D.G. Hardie (2003) ArticleTitleA novel domain in AMP-activated protein kinase causes glycogen storage bodies similar to those seen in hereditary cardiac arrhythmias Curr. Biol. 13 861–866

    Google Scholar 

  • R.A. Jefferson T.A. Kavanagh M.W. Bevan (1987) ArticleTitleGUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants EMBO J. 6 3901–3907

    Google Scholar 

  • R. Jiang M. Carlson (1997) ArticleTitleThe Snf1 protein kinase and its activating subunit, Snf4, interact with distinct domains of the Sip1/Sip2/Gal83 component in the kinase complex Mol. Cell Biol. 17 2099–2106

    Google Scholar 

  • R. Kay A. Chan M. Daly J.D. McPherson (1987) ArticleTitleDuplication of CaMV 35S promoter sequences creates a strong enhancer for plant genes Science 236 1299–1302

    Google Scholar 

  • T. Kleinow R. Bhalerao F. Breuer M. Umeda K. Salchert C. Koncz (2000) ArticleTitleFunctional identification of an Arabidopsis Snf4 ortholog by screening for heterologous multicopy suppressors of snf4 deficiency in yeast Plant J. 23 115–122

    Google Scholar 

  • A. Krogh (1997) ArticleTitleTwo methods for improving performance of an HMM and their application for gene finding Proc. Int. Conf. Intell. Syst. Mol. Biol. 5 179–186

    Google Scholar 

  • L. Lakatos M. Klein R. Hofgen Z. Banfalvi (1999) ArticleTitlePotato StubSNF1 interacts with StubGAL83: a plant protein kinase complex with yeast and mammalian counterparts Plant J. 17 569–574

    Google Scholar 

  • I. Leclerc A. Kahn B. Doiron (1998) ArticleTitleThe 5′-AMP-activated protein kinase inhibits the transcriptional stimulation by glucose in liver cells, acting through the glucose response complex FEBS Lett. 431 180–184

    Google Scholar 

  • P. Lessard V. Decroocq M. Thomas (1997) Isolation, cloning and substractive hybridization M.S. Clark (Eds) Plant Molecular Biology. A Laboratory Manual Springer Verlag Berlin 154–201

    Google Scholar 

  • V. Lumbreras M.M. Alba T. Kleinow C. Koncz M. Pages (2001) ArticleTitleDomain fusion between SNF1-related kinase subunits during plant evolution EMBO Rep. 2 55–60

    Google Scholar 

  • K. Nakashima Z.K. Shinwari Y. Sakuma M. Seki S. Miura K. Shinozaki K. Yamaguchi-Shinozaki (2000) ArticleTitleOrganization and expression of two Arabidopsis DREB2 genes encoding DRE- binding proteins involved in dehydration- and high-salinity-responsive gene expression Plant Mol. Biol. 42 657–665

    Google Scholar 

  • R.D. Page (1996) ArticleTitleTreeView: an application to display phylogenetic trees on personal computers Comput. Appl. Biosci. 12 357–358

    Google Scholar 

  • B. Plesse M.C. Criqui A. Durr Y. Parmentier J. Fleck P. Genschik (2001) ArticleTitleEffects of the polyubiquitin gene Ubi. U4 leader intron and first ubiquitin monomer on reporter gene expression in Nicotiana tabacum. Plant Mol. Biol. 45 655–667

    Google Scholar 

  • G. Polekhina A. Gupta B.J. Michell B. van Denderen S. Murthy S.C. Feil I.G. Jennings D.J. Campbell L.A. Witters M.W. Parker B.E. Kemp D. Stapleton (2003) ArticleTitleAMPK beta subunit targets metabolic stress sensing to glycogen Curr. Biol. 13 867–871

    Google Scholar 

  • P.C. Purcell A.M. Smith N.G. Halford (1998) ArticleTitleAntisense expression of a sucrose non-fermenting-1-related protein kinase sequence in potato results in decreased expression of sucrose synthase in tubers and loss of sucrose-inducibility of sucrose synthase transcripts in leaves Plant J. 14 195–202

    Google Scholar 

  • M.C. Schmidt R.R. McCartney (2000) ArticleTitleBeta-subunits of Snf1 kinase are required for kinase function and substrate definition EMBO J. 19 4936–4943

    Google Scholar 

  • C. Sugden P.G. Donaghy N.G. Halford D.G. Hardie (1999) ArticleTitleTwo SNF1-related protein kinases from spinach leaf phosphorylate and inactivate 3-hydroxy-3-methylglutaryl-coenzyme A reductase, nitrate reductase, and sucrose phosphate synthase in vitro Plant Physiol. 120 257–274

    Google Scholar 

  • J.D. Thompson T.J. Gibson F. Plewniak F. Jeanmougin D.G. Higgins (1997) ArticleTitleThe CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools Nucleic Acids Res. 25 4876–4882

    Google Scholar 

  • C. Thornton M.A. Snowden D. Carling (1998) ArticleTitleIdentification of a novel AMP-activated protein kinase beta subunit isoform that is highly expressed in skeletal muscle J. Biol. Chem. 273 12443–12450

    Google Scholar 

  • O. Vincent M. Carlson (1999) ArticleTitleGal83 mediates the interaction of the Snf1 kinase complex with the transcription activator Sip4 EMBO J. 18 6672–6681

    Google Scholar 

  • O. Vincent R. Townley S. Kuchin M. Carlson (2001) ArticleTitleSubcellular localization of the Snf1 kinase is regulated by specific beta subunits and a novel glucose signaling mechanism Genes Dev. 15 1104–1114

    Google Scholar 

  • S.M. Warden C. Richardson J. O’Donnell SuffixJr. D. Stapleton B.E. Kemp L.A. Witters (2001) ArticleTitlePost-translational modifications of the beta-1 subunit of AMP-activated protein kinase affect enzyme activity and cellular localization Biochem. J. 354 275–283

    Google Scholar 

  • H.A. Wiatrowski B.J. Van Denderen C.D. Berkey B.E. Kemp D. Stapleton M. Carlson (2004) ArticleTitleMutations in the gal83 glycogen-binding domain activate the snf1/gal83 kinase pathway by a glycogen-independent mechanism Mol. Cell. Biol. 24 352–361

    Google Scholar 

  • A. Woods P.C. Cheung F.C. Smith M.D. Davison J. Scott R.K. Beri D. Carling (1996) ArticleTitleCharacterization of AMP-activated protein kinase beta and gamma subunits. Assembly of the heterotrimeric complex in vitro. J. Biol. Chem. 271 10282–10290

    Google Scholar 

  • A. Woods D. Azzout-Marniche M. Foretz S.C. Stein P. Lemarchand P. Ferre F. Foufelle D. Carling (2000) ArticleTitleCharacterization of the role of AMP-activated protein kinase in the regulation of glucose-activated gene expression using constitutively active and dominant negative forms of the kinase Mol. Cell Biol. 20 6704–6711

    Google Scholar 

  • Y. Xia Z. Zhang U. Kruse P.K. Vogt J. Li (2000) ArticleTitleThe new serine-threonine kinase, Qik, is a target of the Qin oncogene Biochem. Biophys. Res. Commun. 276 564–570

    Google Scholar 

  • X. Yang E.J. Hubbard M. Carlson (1992) ArticleTitleA protein kinase substrate identified by the two-hybrid system Science 257 680–682

    Google Scholar 

  • X. Yang R. Jiang M. Carlson (1994) ArticleTitleA family of proteins containing a conserved domain that mediates interaction with the yeast SNF1 protein kinase complex EMBO J. 13 5878–5886

    Google Scholar 

  • Y. Zhang P.R. Shewry H. Jones P. Barcelo P.A. Lazzeri N.G. Halford (2001) ArticleTitleExpression of antisense SnRK1 protein kinase sequence causes abnormal pollen development and male sterility in transgenic barley Plant J. 28 431–441

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martine Thomas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gissot, L., Polge, C., Bouly, JP. et al. AKINβ3, a plant specific SnRK1 protein, is lacking domains present in yeast and mammals non-catalytic β-subunits. Plant Mol Biol 56, 747–759 (2004). https://doi.org/10.1007/s11103-004-5111-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-004-5111-1

Keywords

Navigation