Skip to main content
Log in

Health effects of phloretin: from chemistry to medicine

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Dihydrochalcones are a class of secondary metabolites, whose demand in biological and pharmacological applications is rapidly growing. Phloretin is one of the best known and abundant dihydrochalcone characterized by the presence of 2,6-dihydroxyacetophenone pharmacophore. It is a versatile molecule with anticancer, antiosteoclastogenic, antifungal, antiviral, anti-inflammatory, antibacterial and estrogenic activities and able to increase the fluidity of biological membranes and penetration of administered drugs. In this review we have performed a critical evaluation of available literature as far as phloretin beneficial effects and activation/block of intracellular signal cascade are of concern. In addition, we supply useful information on its chemical properties, sources and bioavailability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • An RB, Park EJ, Jeong GS et al (2007) Cytoprotective constituent of Hoveniae Lignum on both Hep G2 cells and rat primary hepatocytes. Arch Pharm Res 30:674–677

    Article  CAS  PubMed  Google Scholar 

  • Barreca D, Bellocco E, Caristi C et al (2011) Kumquat (Fortunella japonica Swingle) juice: flavonoid distribution and antioxidant properties. Food Res Int 44:2190–2197

    Article  CAS  Google Scholar 

  • Barreca D, Bellocco E, Caristi C et al (2013) Flavonoid and antioxidant properties of fruits belonging to the Annona and Citrus genera. Tropical and subtropical fruits: flavors, color, and health benefits. American Chemical Society, pp 103–119

  • Barreca D, Bellocco E, Laganà G et al (2014) Biochemical and antimicrobial activity of phloretin and its glycosilated derivatives present in apple and kumquat. Food Chem 160:292–297

    Article  CAS  PubMed  Google Scholar 

  • Barreca D, Laganà G, Toscano G et al (2017a) The interaction and binding of flavonoids to human serum albumin modify its conformation, stability and resistance against aggregation and oxidative injuries. Biochim Biophys Acta (BBA)-Gen Subj. doi: 10.1016/j.bbagen.2016.03.014

  • Barreca D, Currò M, Bellocco E et al (2017b) Neuroprotective effects of phloretin and its glycosylated derivative on rotenone-induced toxicity in human SH-SY5Y neuronal-like cells. Biofactors. doi:10.1002/biof.1358

    Google Scholar 

  • Bays H (2013) Sodium glucose co-transporter type 2 (SGLT2) inhibitors: targeting the kidney to improve glycemic control in diabetes mellitus. Diabetes Ther 4(2):195–220

    Article  PubMed  PubMed Central  Google Scholar 

  • Bentes AL, Borges RS, Monteiro WR et al (2011) Structure of dihydrochalcones and related derivatives and their scavenging and antioxidant activity against oxygen and nitrogen radical species. Molecules 16:1749–1760

    Article  CAS  PubMed  Google Scholar 

  • Borges G, Lean ME, Roberts SA (2013) Bioavailability of dietary (poly) phenols: a study with ileostomists to discriminate between absorption in small and large intestine. Food Funct 4:754–762

    Article  CAS  PubMed  Google Scholar 

  • Bors W, Heller W, Michel C et al (1990) Flavonoids as antioxidants: determination of radical-scavenging efficiencies. Methods Enzymol 186:343–355

    Article  CAS  PubMed  Google Scholar 

  • Calliste CA, Le Bail JC, Trouillas P et al (2000) Chalcones: structural requirements for antioxidant, estrogenic and antiproliferative activities. Anticancer Res 21:3949–3956

    Google Scholar 

  • Chang WT, Huang WC, Liou CJ (2012) Evaluation of the anti-inflammatory effects of phloretin and phlorizin in lipopolysaccharide-stimulated mouse macrophages. Food Chem 134:972–979

    Article  CAS  PubMed  Google Scholar 

  • Chung MJ, Sohng JK, Choi DJ et al (2013) Inhibitory effect of phloretin and biochanin A on IgE-mediated allergic responses in rat basophilic leukemia RBL-2H3 cells. Life Sci 93:401–408

    Article  PubMed  Google Scholar 

  • Crespy V, Aprikian O, Morand C et al (2001) Bioavailability of phloretin and phloridzin in rats. J Nutr 131:3227–3230

    CAS  PubMed  Google Scholar 

  • de Bernonville TD, Guyot S, Paulin JP et al (2010) Dihydrochalcones: implication in resistance to oxidative stress and bioactivities against advanced glycation end-products and vasoconstriction. Phytochemistry 71:443–452

    Article  Google Scholar 

  • de Oliveira MR (2016) Phloretin-induced cytoprotective effects on mammalian cells: a mechanistic view and future directions. BioFactors 42:13–40

    PubMed  Google Scholar 

  • Feng X (2005) RANKing intracellular signaling in osteoclasts. IUBMB Life 57:389–395

    Article  CAS  PubMed  Google Scholar 

  • Fordham JB, Naqvi AR, Nares S (2014) Leukocyte production of inflammatory mediators is inhibited by the antioxidants phloretin, silymarin, hesperetin, and resveratrol. Mediators Inflamm 2014:938712

    Article  PubMed  PubMed Central  Google Scholar 

  • Galati G, Sabzevari O, Wilson JX et al (2002) Prooxidant activity and cellular effects of the phenoxyl radicals of dietary flavonoids and other polyphenolics. Toxicology 177:91–104

    Article  CAS  PubMed  Google Scholar 

  • Gambhir S, Vyas D, Hollis M et al (2015) Nuclear factor kappa B role in inflammation associated gastrointestinal malignancies. World J Gastroenterol 21:3174–3183

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gaucher M, de Bernonville TD, Lohou D et al (2013) Histolocalization and physico-chemical characterization of dihydrochalcones: insight into the role of apple major flavonoids. Phytochemistry 90:78–89

    Article  CAS  PubMed  Google Scholar 

  • Gosch C, Halbwirth H, Kuhn J et al (2009) Biosynthesis of phloridzin in apple (Malus domestica Borkh.). Plant Sci 176:223–231

    Article  CAS  Google Scholar 

  • Harborne JB (2013) The flavonoids: advances in research since 1980. Springer, New York

    Google Scholar 

  • Hassan M, El Yazidi C, Landrier JF et al (2007) Phloretin enhances adipocyte differentiation and adiponectin expression in 3T3-L1 cells. Biochem Biophys Res Commun 361:208–213

    Article  CAS  PubMed  Google Scholar 

  • Hilt P, Schieber A, Yildirim C et al (2003a) Detection of phloridzin in strawberries (Fragaria x ananassa Duch.) by HPLC-PDA-MS/MS and NMR spectroscopy. J Agric Food Chem 51:2896–2899

    Article  CAS  PubMed  Google Scholar 

  • Hilt P, Schieber A, Yildirim C et al (2003b) Detection of phloridzin in strawberries (Fragaria x ananassa Duch.) by HPLC-PDA-MS/MS and NMR spectroscopy. J Agric Food Chem 51:2896–2899

    Article  CAS  PubMed  Google Scholar 

  • Hoesel B, Schmid JA (2013) The complexity of NF-kappaB signaling in inflammation and cancer. Mol Cancer 12:86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang AC, Wilde A, Ebmeyer J et al (2013) Examination of the phenolic profile and antioxidant activity of the leaves of the Australian native plant Smilax glyciphylla. J Nat Prod 76:1930–1936

    Article  CAS  PubMed  Google Scholar 

  • Huang WC, Dai YW, Peng HL et al (2015) Phloretin ameliorates chemokines and ICAM-1 expression via blocking of the NF-kappaB pathway in the TNF-alpha-induced HaCaT human keratinocytes. Int Immunopharmacol 27:32–37

    Article  CAS  PubMed  Google Scholar 

  • Iwashina T, Kitajima J, Takemura T (2012) Flavonoids from the leaves of six Corylopsis species (Hamamelidaceae). Biochem System Ecol 44:361–363

    Article  CAS  Google Scholar 

  • Jung M, Triebel S, Anke T et al (2009) Influence of apple polyphenols on inflammatory gene expression. Mol Nutr Food Res 53:1263–1280

    Article  CAS  PubMed  Google Scholar 

  • Kim MS, Kwon JY, Kang NJ et al (2009) Phloretin induces apoptosis in H-Ras MCF10A human breast tumor cells through the activation of p53 via JNK and p38 mitogen-activated protein kinase signaling. Ann N Y Acad Sci 1171:479–483

    Article  CAS  PubMed  Google Scholar 

  • Kim JL, Kang MK, Gong JH et al (2012) Novel antiosteoclastogenic activity of phloretin antagonizing RANKL-induced osteoclast differentiation of murine macrophages. Mol Nutr Food Res 56:1223–1233

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Regmi SC, Kim JA et al (2011) Apple flavonoid phloretin inhibits Escherichia coli O157:H7 biofilm formation and ameliorates colon inflammation in rats. Infect Immun 79:4819–4827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee EJ, Kim JL, Kim YH et al (2014) Phloretin promotes osteoclast apoptosis in murine macrophages and inhibits estrogen deficiency-induced osteoporosis in mice. Phytomedicine 21:1208–1215

    Article  CAS  PubMed  Google Scholar 

  • Leu SJ, Lin YP, Lin RD et al (2006) Phenolic constituents of Malus doumeri var. formosana in the field of skin care. Biol Pharm Bull 29:740–745

    Article  CAS  PubMed  Google Scholar 

  • Li X, Zhao Y, Hou S et al (2014) Identification of the bioactive components of orally administered Lithocarpus polystachyus Rehd and their metabolites in rats by liquid chromatography coupled to LTQ Orbitrap mass spectrometry. J Chromatogr B 962:37–43

    Article  CAS  Google Scholar 

  • Liu Y, Zhang L, Liang J (2015) Activation of the Nrf2 defense pathway contributes to neuroprotective effects of phloretin on oxidative stress injury after cerebral ischemia/reperfusion in rats. J Neurol Sci 351:88–92

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Fan C, Pu L et al (2016) Phloretin induces cell cycle arrest and apoptosis of human glioblastoma cells through the generation of reactive oxygen species. J Neurooncol 128:217–223

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Wang R, Nan Y et al (2016) Phloretin exhibits an anticancer effect and enhances the anticancer ability of cisplatin on non-small cell lung cancer cell lines by regulating expression of apoptotic pathways and matrix metalloproteinases. Int J Oncol 48:843–853

    CAS  PubMed  Google Scholar 

  • Nagatomo Y, Usui S, Ito T et al (2014) Purification, molecular cloning and functional characterization of flavonoid C-glucosyltransferases from Fagopyrum esculentum M. (buckwheat) cotyledon. Plant J 80:437–448

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y, Watanabe S, Miyake N et al (2003) Dihydrochalcones: evaluation as novel radical scavenging antioxidants. J Agric Food Chem 51:3309–3312

    Article  CAS  PubMed  Google Scholar 

  • Nusse R, Varmus HE (1992) Wnt genes. Cell 1992(69):1073–1087

    Article  Google Scholar 

  • Park SY, Kim EJ, Shin HK et al (2007) Induction of apoptosis in HT-29 colon cancer cells by phloretin. J Med Food 10:581–586

    Article  CAS  PubMed  Google Scholar 

  • Pawlowska AM, Camangi F, Bader A et al (2009) Flavonoids of Zizyphus jujuba L. and Zizyphus spina-christi (L.) Willd (Rhamnaceae) fruits. Food Chem 112:858–862

    Article  CAS  Google Scholar 

  • Polya G (2003) Biochemical targets of plant bioactive compounds: a pharmacological reference guide to sites of action and biological effects. CRC Press, Boca Raton

    Book  Google Scholar 

  • Raja MM, Tyagi NK, Kinne RK (2003) Phlorizin recognition in a C-terminal fragment of SGLT1 studied by tryptophan scanning and affinity labeling. J Biol Chem 278:49154–49163

    Article  CAS  PubMed  Google Scholar 

  • Rana S, Bhushan S (2015) Apple phenolics as nutraceuticals: assessment, analysis and application. J Food Sci Technol 1-12

  • Ratty AK, Das NP (1988) Effects of flavonoids on nonenzymatic lipid peroxidation: structure-activity relationship. Biochem Med Metab Biol 39:69–79

    Article  CAS  PubMed  Google Scholar 

  • Ren D, Liu Y, Zhao Y (2016) Hepatotoxicity and endothelial dysfunction induced by high choline diet and the protective effects of phloretin in mice. Food Chem Toxicol 94:203–212

    Article  CAS  PubMed  Google Scholar 

  • Rezk BM, Haenen GR, van der Vijgh WJ et al (2002) The antioxidant activity of phloretin: the disclosure of a new antioxidant pharmacophore in flavonoids. Biochem Biophys Res Commun 295:9–13

    Article  CAS  PubMed  Google Scholar 

  • Shin S, Kum H, Ryu D et al (2014) Protective effects of a new phloretin derivative against UVB-induced damage in skin cell model and human volunteers. Int J Mol Sci 15:18919–18940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shu G, Lu NS, Zhu XT et al (2014) Phloretin promotes adipocyte differentiation in vitro and improves glucose homeostasis in vivo. J Nutr Biochem 25:1296–1308

    Article  CAS  PubMed  Google Scholar 

  • Spencer JP, Crozier A (2012) Flavonoids and related compounds: bioavailability and function. CRC Press, Boca Raton

    Google Scholar 

  • Stangl V, Lorenz M, Ludwig A et al (2005) The flavonoid phloretin suppresses stimulated expression of endothelial adhesion molecules and reduces activation of human platelets. J Nutr 135:172–178

    CAS  PubMed  Google Scholar 

  • Thilakarathna SH, Rupasinghe H (2013) Flavonoid bioavailability and attempts for bioavailability enhancement. Nutrients 5:3367–3387

    Article  PubMed  PubMed Central  Google Scholar 

  • Tomás-Barberán FA, Clifford MN (2000) Flavanones, chalcones and dihydrochalcones–nature, occurrence and dietary burden. J Sci Food Agric 80:1073–1080

    Article  Google Scholar 

  • Tsao R, Yang R, Young JC (2003) Polyphenolic profiles in eight apple cultivars using high-performance liquid chromatography (HPLC). J Agric Food Chem 51:6347–6353

    Article  CAS  PubMed  Google Scholar 

  • Üllen A, Fauler G, Bernhart E et al (2012) Phloretin ameliorates 2-chlorohexadecanal-mediated brain microvascular endothelial cell dysfunction in vitro. Free Radic Biol Med 53:1770–1781

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Raemdonck K, Van den Steen PE, Liekens S et al (2015) CXCR3 ligands in disease and therapy. Cytokine Growth Factor Rev 26:311–327

    Article  PubMed  Google Scholar 

  • Yang CS, Landau JM, Huang MT et al (2001) Inhibition of carcinogenesis by dietary polyphenolic compounds. AnnRev Nutr 21:381–406

    Article  CAS  Google Scholar 

  • Yang KC, Tsai CY, Wang YJ et al (2009) Apple polyphenol phloretin potentiates the anticancer actions of paclitaxel through induction of apoptosis in human hep G2 cells. Mol Carcinog 48:420–431

    Article  CAS  PubMed  Google Scholar 

  • Zhu Q, Zheng ZP, Cheng KW et al (2009) Natural polyphenols as direct trapping agents of lipid peroxidation-derived acrolein and 4-hydroxy-trans-2-nonenal. Chem Res Toxicol 22:1721–1727

    Article  CAS  PubMed  Google Scholar 

  • Zhu SP, Liu G, Wu XT et al (2013) The effect of phloretin on human gammadelta T cells killing colon cancer SW-1116 cells. Int Immunopharmacol 15:6–14

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A. Sureda was supported by the Spanish Ministry of Health, Social Services and Equality (CIBEROBN - CB12/03/30038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Mohammad Nabavi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behzad, S., Sureda, A., Barreca, D. et al. Health effects of phloretin: from chemistry to medicine. Phytochem Rev 16, 527–533 (2017). https://doi.org/10.1007/s11101-017-9500-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-017-9500-x

Keywords

Navigation