Skip to main content
Log in

The Amaryllidaceae alkaloids: biosynthesis and methods for enzyme discovery

Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Amaryllidaceae alkaloids are an example of the vast diversity of secondary metabolites with great therapeutic promise. The identification of novel compounds in this group with over 300 known structures continues to be an area of active study. The recent identification of norbelladine 4′-O-methyltransferase (N4OMT), an Amaryllidaceae alkaloid biosynthetic enzyme, and the assembly of transcriptomes for Narcissus sp. aff. pseudonarcissus and Lycoris aurea highlight the potential for discovery of Amaryllidaceae alkaloid biosynthetic genes with new technologies. Recent technical advances of interest include those in enzymology, next generation sequencing, genetic modification, nuclear magnetic resonance spectroscopy, and mass spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

ADH:

Alcohol dehydrogenases

AKR:

Aldo-keto reductase

CRISPR:

Clustered regularly interspaced short palindromic repeats

Cas:

CRISPR associated

ELSD:

Evaporative light scattering detection

FTMS:

Fourier transform mass spectrometers

gRNA:

Guide RNA

LDR:

Long-chain dehydrogenases/reductase

MS:

Mass spectrometry

MDR:

Medium-chain dehydrogenase/reductase

N4OMT :

Norbelladine 4′-O-methyltransferase

NMR:

Nuclear magnetic resonance spectroscopy

PAL:

Phenylalanine ammonia-lyase

PAM:

Protospacer adjacent motif

SDR:

Short-chain dehydrogenase/reductase

SPE:

Solid phase extraction

TALENs:

Transcription activator-like effector nucleases

VpVAN:

Vanillin synthase

VIGS:

Virus induced gene silencing

ZFNs:

Zinc-finger nucleases

References

  • Ali Z, Abul-faraj A, Li L et al (2015) Efficient virus-mediated genome editing in plants using the CRISPR/Cas9 system. Mol Plant 8(8):1288–1291

    Article  CAS  PubMed  Google Scholar 

  • Aramini JM, Rossi P, Anklin C et al (2007) Microgram-scale protein structure determination by NMR. Nat Methods 4(6):491–493

    Article  CAS  PubMed  Google Scholar 

  • Arnold FH (2015) The nature of chemical innovation: new enzymes by evolution. Q Rev Biophys 48(4):404–410

    Article  CAS  PubMed  Google Scholar 

  • Au KF, Underwood JG, Lee L et al (2012) Improving PacBio long read accuracy by short read alignment. PLoS One 7(10):e46679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Augustin MM, Ruzicka DR, Shukla AK et al (2015) Elucidating steroid alkaloid biosynthesis in Veratrum californicum: production of verazine in Sf9 cells. Plant J 82(6):991–1003

    Article  CAS  PubMed  Google Scholar 

  • Bastida J, Berkov S, Torras L et al (2011) Chemical and biological aspects of Amaryllidaceae alkaloids. Transworld Research Network, Kerala, India

    Google Scholar 

  • Battersby AR, Binks R (1960) Biosynthesis of lycorine. In: Proceedings of the chemical society of London, pp 410–411

  • Battersby AR, Fales HM, Wildman WC (1961a) Biosynthesis in the Amaryllidaceae. Tyrosine and norbelladine as precursors of haemanthamine. J Am Chem Soc 83(19):4098–4099

    Article  CAS  Google Scholar 

  • Battersby AR, Bink R, Breuer SW (1961b) Biosynthesis in the Amaryllidaceae: incorporation of norbelladine into lycorine and norpluvine. In: Proceedings of the chemical society of London, pp 243

  • Berkov S, Sidjimova B, Evstatieva L et al (2004) Intraspecific variability in the alkaloid metabolism of Galanthus elwesii. Phytochemistry 65(5):579–586

    Article  CAS  PubMed  Google Scholar 

  • Berkov S, Martínez-Francés V, Bastida J et al (2014) Evolution of alkaloid biosynthesis in the genus Narcissus. Phytochemistry 99:95–106

    Article  CAS  PubMed  Google Scholar 

  • Bingol K, Brüschweiler R (2015) Two elephants in the room: new hybrid nuclear magnetic resonance and mass spectrometry approaches for metabolomics. Curr Opin Clin Nutr Metab Care 18(5):471–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bingol K, Bruschweiler-Li L, Yu C et al (2015) Metabolomics beyond spectroscopic databases: a combined MS/NMR strategy for the rapid identification of new metabolites in complex mixtures. Anal Chem 87(7):3864–3870

    Article  CAS  PubMed  Google Scholar 

  • Bolukbasi MF, Gupta A, Oikemus S et al (2015) DNA-binding-domain fusions enhance the targeting range and precision of Cas9. Nat Method 12(12):1150–1156

    Article  CAS  Google Scholar 

  • Boycheva S, Daviet L, Wolfender JL et al (2014) The rise of operon-like gene clusters in plants. Trends Plant Sci 19(7):447–459

    Article  CAS  PubMed  Google Scholar 

  • Brooks C, Nekrasov V, Lippman ZB et al (2014) Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. Plant Physiol 166(3):1292–1297

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bruce IT, Kirby GW (1968) Stereochemistry of protonation and hydroxylation in the biosynthesis of norpluviine and lycorine. Chem Commun (London) 4:207–208

    Article  Google Scholar 

  • Budimir N, Weston DJ, Creaser CS (2007) Analysis of pharmaceutical formulations using atmospheric pressure ion mobility spectrometry combined with liquid chromatography and nano-electrospray ionisation. Analyst 132(1):34–40

    Article  CAS  PubMed  Google Scholar 

  • Camilla LC, Loose M, Tyson JR et al (2015) MinION analysis and reference consortium: phase 1 data release and analysis [version 1; referees: 1 approved]. F1000Research 4:1075

    Google Scholar 

  • Carroll D (2011) Genome engineering with zinc-finger nucleases. Genetics 188(4):773–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castro A, Moco S, Coll J et al (2010) LC-MS-SPE-NMR for the isolation and characterization of neo-clerodane diterpenoids from Teucrium luteum subsp. flavovirens (perpendicular). J Nat Prod 73(5):962–965

    Article  CAS  PubMed  Google Scholar 

  • Chae L, Kim T, Nilo-Poyanco R et al (2014) Genomic signatures of specialized metabolism in plants. Science 344(6183):510–513

    Article  CAS  PubMed  Google Scholar 

  • Chan JLA (1973) Biosynthesis of cherylline using doubly-labled norbelladine-type precursors. Chemistry, Doctor of Philosophy. Retrospective Theses and Dissertations: Iowa State University, pp 116

  • Chase MW, Reveal JL, Michael FF (2009) A subfamilial classification for the expanded asparagalean families Amaryllidaceae, Asparagaceae and Xanthorrhoeaceae. Bot J Linn Soc 161(2):132–136

    Article  Google Scholar 

  • Choi KB, Morishige T, Shitan N et al (2002) Molecular cloning and characterization of coclaurine N-methyltransferase from cultured cells of Coptis japonica. J Biol Chem 277(1):830–835

    Article  CAS  PubMed  Google Scholar 

  • Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Constantin MA, Conrad J, Beifuss U (2012) Laccase-catalyzed oxidative phenolic coupling of vanillidene derivatives. Green Chem 14:2375–2379

    Article  CAS  Google Scholar 

  • Cremin PA, Zeng L (2002) High-throughput analysis of natural product compound libraries by parallel LC–MS evaporative light scattering detection. Anal Chem 74(21):5492–5500

    Article  CAS  PubMed  Google Scholar 

  • Díaz Chávez ML, Rolf M, Gesell A et al (2011) Characterization of two methylenedioxy bridge-forming cytochrome P450-dependent enzymes of alkaloid formation in the Mexican prickly poppy Argemone mexicana. Arch Biochem Biophys 507(1):186–193

    Article  PubMed  CAS  Google Scholar 

  • Doskočil I, Hošťálková A, Šafratová M et al (2015) Cytotoxic activities of Amaryllidaceae alkaloids against gastrointestinal cancer cells. Phytochem Lett 13:394–398

    Article  CAS  Google Scholar 

  • Dwivedi P, Wu C, Matz LM et al (2006) Gas-phase chiral separations by ion mobility spectrometry. Anal Chem 78(24):8200–8206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eichhorn J, Takada T, Kita Y et al (1998) Biosynthesis of the Amaryllidaceae alkaloid galanthamine. Phytochemistry 49(4):1037–1047

    Article  CAS  Google Scholar 

  • Eldridge GR, Vervoort HC, Lee CM et al (2002) High-throughput method for the production and analysis of large natural product libraries for drug discovery. Anal Chem 74(16):3963–3971

    Article  CAS  PubMed  Google Scholar 

  • Engelhardt BE, Jordan MI, Repo ST et al (2009) Phylogenetic molecular function annotation. J Phys Conf Ser 180(1):12024

    Article  PubMed  CAS  Google Scholar 

  • Fahrendorf T, Dixon RA (1993) Stress responses in alfalfa (Medicago sativa L.). XVIII: molecular cloning and expression of the elicitor-inducible cinnamic acid 4-hydroxylase cytochrome P450. Arch Biochem Biophys 305(2):509–515

    Article  CAS  PubMed  Google Scholar 

  • Fan D, Liu T, Li C et al (2015) Efficient CRISPR/Cas9-mediated targeted mutagenesis in Populus in the first generation. Sci Rep 5:12217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng C, Yuan J, Wang R et al (2015) Efficient targeted genome modification in maize using CRISPR/Cas9 system. J Genet Genom. doi:10.1016/j.jgg.2015.10.002

    Google Scholar 

  • Fisher RA (1930) The genetical theory of natural selection. Oxford University Press, Oxford

    Book  Google Scholar 

  • Flusberg BA, Webster DR, Lee JH et al (2010) Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat Methods 7(6):461–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franke R, Humphreys JM, Hemm MR et al (2002) The Arabidopsis REF8 gene encodes the 3-hydroxylase of phenylpropanoid metabolism. Plant J 30(1):33–45

    Article  CAS  PubMed  Google Scholar 

  • Fratila RM, Velders AH (2011) Small-volume nuclear magnetic resonance spectroscopy. Annu Rev Anal Chem (Palo Alto Calif) 4:227–249

    Article  CAS  Google Scholar 

  • Fuganti C (1973) Evidence for the intermediacy of 11-hydroxyvittatine in the biosynthesis of narciclasine. Gazz Chim Ital 103:1255–1258

    CAS  Google Scholar 

  • Fuganti C, Mazza M (1972a) The absolute configuration of narciclasine: a biosynthetic approach. J Chem Soc Chem Commun 4:239

    Article  Google Scholar 

  • Fuganti C, Mazza M (1972b) Stereochemistry of hydorxylation in the biosynthesis of lycorine in Clivia miniata regel. J Chem Soc Chem Commun 16:936–937

    Article  Google Scholar 

  • Furnham N, Sillitoe I, Holliday GL et al (2012) Exploring the evolution of novel enzyme functions within structurally defined protein superfamilies. PLoS Comput Biol 8(3):e1002403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaj T, Gersbach CA, Barbas CF III (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31(7):397–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallage NJ, Hansen EH, Kannangara R et al (2014) Vanillin formation from ferulic acid in Vanilla planifolia is catalysed by a single enzyme. Nat Commun 5:4037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gang DR, Lavid N, Zubieta C et al (2002) Characterization of phenylpropene O-methyltransferases from sweet basil: facile change of substrate specificity and convergent evolution within a plant O-methyltransferase family. Plant Cell 14(2):505–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao J, Wang G, Ma S et al (2015) CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Mol Biol 87(1–2):99–110

    Article  CAS  PubMed  Google Scholar 

  • Giddings LA, Liscombe DK, Hamilton JP et al (2011) A stereoselective hydroxylation step of alkaloid biosynthesis by a unique cytochrome P450 in Catharanthus roseus. J Biol Chem 286(19):16751–16757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilles AF, Averof M (2014) Functional genetics for all: engineered nucleases, CRISPR and the gene editing revolution. Evodevo 5:43

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gnerre S, Maccallum I, Przybylski D et al (2011) High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc Natl Acad Sci USA 108(4):1513–1518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Góngora-Castillo E, Childs KL, Fedewa G et al (2012) Development of transcriptomic resources for interrogating the biosynthesis of monoterpene indole alkaloids in medicinal plant species. PLoS One 7(12):e52506

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guilinger JP, Pattanayak V, Reyon D et al (2014) Broad specificity profiling of TALENs results in engineered nucleases with improved DNA cleavage specificity. Nat Method 11(4):429–435

    Article  CAS  Google Scholar 

  • Haas BJ, Papanicolaou A, Yassour M et al (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8(8):1494–1512

    Article  CAS  PubMed  Google Scholar 

  • Hackl T, Hedrich R, Schultz J et al (2014) proovread: large-scale high-accuracy PacBio correction through iterative short read consensus. Bioinformatics 30(21):3004–3011

    Article  PubMed  PubMed Central  Google Scholar 

  • Havelek R, Seifrtova M, Kralovec K et al (2014) The effect of Amaryllidaceae alkaloids haemanthamine and haemanthidine on cell cycle progression and apoptosis in p53-negative human leukemic Jurkat cells. Phytomedicine 21(4):479–490

    Article  CAS  PubMed  Google Scholar 

  • Havkin-Frenkel D, Podstolski A, Dixon R (2003) Vanillin biosynthetic pathway enzyme from Vanilla planifolia. US Patent 10/087,714, 9 Apr 2003

  • He M, Qu C, Gao O et al (2015) Biological and pharmacological activities of Amaryllidaceae alkaloids. RSC Adv 5:16562–16574

    Article  CAS  Google Scholar 

  • Hopley C, Bristow T, Lubben A et al (2008) Towards a universal product ion mass spectral library—reproducibility of product ion spectra across eleven different mass spectrometers. Rapid Commun Mass Spectrom 22(12):1779–1786

    Article  CAS  PubMed  Google Scholar 

  • Ibdah M, Zhang XH, Schmidt J et al (2003) A novel Mg(2+)-dependent O-methyltransferase in the phenylpropanoid metabolism of Mesembryanthemum crystallinum. J Biol Chem 278(45):43961–43972

    Article  CAS  PubMed  Google Scholar 

  • Ikezawa N, Tanaka M, Nagayoshi M et al (2003) Molecular cloning and characterization of CYP719, a methylenedioxy bridge-forming enzyme that belongs to a novel P450 family, from cultured Coptis japonica cells. J Biol Chem 278(40):38557–38565

    Article  CAS  PubMed  Google Scholar 

  • Irmler S, Schröder G, St-Pierre B et al (2000) Indole alkaloid biosynthesis in Catharanthus roseus: new enzyme activities and identification of cytochrome P450 CYP72A1 as secologanin synthase. Plant J 24(6):797–804

    Article  CAS  PubMed  Google Scholar 

  • Itkin M, Heinig U, Tzfadia O et al (2013) Biosynthesis of antinutritional alkaloids in solanaceous crops is mediated by clustered genes. Science 341(6142):175–179

    Article  CAS  PubMed  Google Scholar 

  • Jeffs P (1962) The Alkaloids of the Amaryllidaceae. Part X. Biosynthesis of haemanthamine. In: Proceedings of the chemical society of London, pp 80–81

  • Jia H, Wang N (2014) Targeted genome editing of sweet orange using Cas9/sgRNA. PLoS One 9(4):e93806

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang J, He X, Cane DE (2006) Geosmin biosynthesis. Streptomyces coelicolor germacradienol/germacrene D synthase converts farnesyl diphosphate to geosmin. J Am Chem Soc 128(25):8128–8129

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Xia N, Li X et al (2011) Molecular cloning and characterization of a phenylalanine ammonia-lyase gene (LrPAL) from Lycoris radiata. Mol Biol Rep 38(3):1935–1940

    Article  CAS  PubMed  Google Scholar 

  • Jiang W, Zhou H, Bi H et al (2013a) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41(20):e188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Y, Xia B, Liang L et al (2013b) Molecular and analysis of a phenylalanine ammonia-lyase gene (LrPAL2) from Lycoris radiata. Mol Biol Rep 40(3):2293–2300

    Article  CAS  PubMed  Google Scholar 

  • Jin Z (2009) Amaryllidaceae and Sceletium alkaloids. Nat Prod Rep 26(3):363–381

    Article  CAS  PubMed  Google Scholar 

  • Jin Z (2013) Amaryllidaceae and Sceletium alkaloids. Nat Prod Rep 30(6):849–868

    Article  CAS  PubMed  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821

    Article  CAS  PubMed  Google Scholar 

  • Johnson RA, Gurevich V, Filler S et al (2015) Comparative assessments of CRISPR-Cas nucleases’ cleavage efficiency in planta. Plant Mol Biol 87(1–2):143–156

    Article  CAS  PubMed  Google Scholar 

  • Jörnvall H, Persson B, Krook M et al (1995) Short-chain dehydrogenases/reductases (SDR). Biochemistry 34(18):6003–6013

    Article  PubMed  Google Scholar 

  • Kamenetsky R, Faigenboim A, Shemesh Mayer E et al (2015) Integrated transcriptome catalogue and organ-specific profiling of gene expression in fertile garlic (Allium sativum L.). BMC Genom 16(1):12

    Article  CAS  Google Scholar 

  • Kato M, Mizuno K, Crozier A et al (2000) Caffeine synthase gene from tea leaves. Nature 406(6799):956–957

    Article  CAS  PubMed  Google Scholar 

  • Kavanagh KL, Jörnvall H, Persson B et al (2008) Medium- and short-chain dehydrogenase/reductase gene and protein families: the SDR superfamily: functional and structural diversity within a family of metabolic and regulatory enzymes. Cell Mol Life Sci 65(24):3895–3906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kellner F, Kim J, Clavijo BJ et al (2015) Genome-guided investigation of plant natural product biosynthesis. Plant J 82(4):680–692

    Article  CAS  PubMed  Google Scholar 

  • Kilgore MB, Augustin MM, Starks CM et al (2014) Cloning and characterization of a norbelladine 4′-O-methyltransferase involved in the biosynthesis of the Alzheimer’s drug galanthamine in Narcissus sp. aff. pseudonarcissus. PLoS One 9(7):e103223

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim Y, Schumaker KS, Zhu JK (2006) EMS mutagenesis of Arabidopsis. Methods Mol Biol 323:101–103

    CAS  PubMed  Google Scholar 

  • Kirby GW, Tiwari HP (1966) Phenol oxidation and biosynthesis. Part IX. The biosynthesis of norpluviine and galanthine. J Chem Soc (January):676–682

  • Kleinstiver BP, Prew MS, Tsai SQ et al (2015) Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523(7561):481–485

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kornienko A, Evidente A (2008) Chemistry, biology, and medicinal potential of narciclasine and its congeners. Chem Rev 108(6):1982–2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krauss M, Singer H, Hollender J (2010) LC-high resolution MS in environmental analysis: from target screening to the identification of unknowns. Anal Bioanal Chem 397(3):943–951

    Article  CAS  PubMed  Google Scholar 

  • Langmead B (2010) Aligning short sequencing reads with Bowtie. Curr Protoc Bioinform Chapter: 11, Unit: 11–7. doi:10.1002/0471250953.bi1107s32

  • Larsen PA, Heilman AM, Yoder AD (2014) The utility of PacBio circular consensus sequencing for characterizing complex gene families in non-model organisms. BMC Genom 15:720

    Article  Google Scholar 

  • Lau W, Sattely ES (2015) Six enzymes from mayapple that complete the biosynthetic pathway to the etoposide aglycone. Science 349(6253):1224–1228

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Gurtowski J, Yoo S et al (2014) Error correction and assembly complexity of single molecule sequencing reads. bioRxiv. doi:10.1101/006395

    Google Scholar 

  • Lehmann T, Pollmann S (2009) Gene expression and characterization of a stress-induced tyrosine decarboxylase from Arabidopsis thaliana. FEBS Lett 583(12):1895–1900

    Article  CAS  PubMed  Google Scholar 

  • Lester DR, Ross JJ, Davies PJ et al (1997) Mendel’s stem length gene (Le) encodes a gibberellin 3 beta-hydroxylase. Plant Cell 9(8):1435–1443

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25(14):1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li R, Zhu H, Ruan J et al (2010) De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 20(2):265–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li R, Wang MY, Li XB (2012) Chemical constituents and biological activities of genus Hosta (Liliaceae). J Med Plant Res 6(14):2704–2713

    CAS  Google Scholar 

  • Liu J, Hu WX, He LF et al (2004) Effects of lycorine on HL-60 cells via arresting cell cycle and inducing apoptosis. FEBS Lett 578(3):245–250

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Loraine AE, Dickerson JA (2014) Comparisons of computational methods for differential alternative splicing detection using RNA-seq in plant systems. BMC Bioinformatics 15:364

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Loman NJ, Watson M (2015) Successful test launch for nanopore sequencing. Nat Methods 12(4):303–304

    Article  CAS  PubMed  Google Scholar 

  • Lu G, Zou Q, Guo D et al (2007) Agrobacterium tumefaciens-mediated transformation of Narcissus tazzeta var. chinensis. Plant Cell Rep 26(9):1585–1593

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Zhang Q, Zhu Q et al (2015) A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant 8(8):1274–1284

    Article  CAS  PubMed  Google Scholar 

  • Madoui MA, Engelen S, Cruaud C et al (2015) Genome assembly using Nanopore-guided long and error-free DNA reads. BMC Genom 16(1):327

    Article  CAS  Google Scholar 

  • Mahrous EA, Farag MA (2015) Two dimensional NMR spectroscopic approaches for exploring plant metabolome: a review. J Adv Res 6(1):3–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mali P, Yang L, Esvelt KM et al (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazzaferro LS, Hüttel W, Fries A et al (2015) Cytochrome P450-catalyzed regio- and stereoselective phenol coupling of fungal natural products. J Am Chem Soc 137(38):12289–12295

    Article  CAS  PubMed  Google Scholar 

  • McCoy RC, Taylor RW, Blauwkamp TA et al (2014) Illumina TruSeq synthetic long-reads empower de novo assembly and resolve complex, highly-repetitive transposable elements. PLoS ONE 9(9):e106689

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mikami M, Toki S, Endo M (2015) Comparison of CRISPR/Cas9 expression constructs for efficient targeted mutagenesis in rice. Plant Mol Biol 88(6):561–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikheyev AS, Tin MM (2014) A first look at the Oxford Nanopore MinION sequencer. Mol Ecol Resour 14(6):1097–1102

    Article  CAS  PubMed  Google Scholar 

  • Misra BB, van der Hooft JJJ (2015) Updates in metabolomics tools and resources: 2014–2015. Electrophoresis. doi:10.1002/elps.201500417

    PubMed  Google Scholar 

  • Miyakado M, Kato T, Ohno N et al (1975) Alkaloids of Urginea altissima and their antimicrobial activity against Phytophthora capsici. Phytochemistry 14(12):2717

    Article  CAS  Google Scholar 

  • Morishige T, Dubouzet E, Choi KB et al (2002) Molecular cloning of columbamine O-methyltransferase from cultured Coptis japonica cells. Eur J Biochem 269(22):5659–5667

    Article  CAS  PubMed  Google Scholar 

  • Mulholland DA, Crouch N, Decker B et al (2002) The isolation of the Amaryllidaceae alkaloid crinamine from Dioscorea dregeana (Dioscoreaceae). Biochem Syst Ecol 30(2):183–185

    Article  CAS  Google Scholar 

  • Nelson D, Werck-Reichhart D (2011) A P450-centric view of plant evolution. Plant J 66(1):194–211

    Article  CAS  PubMed  Google Scholar 

  • Nützmann HW, Osbourn A (2015) Regulation of metabolic gene clusters in Arabidopsis thaliana. New Phytol 205(2):503–510

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Okada A, Okada K, Miyamoto K et al (2009) OsTGAP1, a bZIP transcription factor, coordinately regulates the inductive production of diterpenoid phytoalexins in rice. J Biol Chem 284(39):26510–26518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ono E, Nakai M, Fukui Y et al (2006) Formation of two methylenedioxy bridges by a Sesamum CYP81Q protein yielding a furofuran lignan, (+)-sesamin. Proc Natl Acad Sci USA 103(26):10116–10121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ounaroon A, Decker G, Schmidt J et al (2003) (R, S)-Reticuline 7-O-methyltransferase and (R, S)-norcoclaurine 6-O-methyltransferase of Papaver somniferum—cDNA cloning and characterization of methyl transfer enzymes of alkaloid biosynthesis in opium poppy. Plant J 36(6):808–819

    Article  CAS  PubMed  Google Scholar 

  • Page DR, Grossniklaus U (2002) The art and design of genetic screens: arabidopsis thaliana. Nat Rev Genet 3(2):124–136

    Article  CAS  PubMed  Google Scholar 

  • Pichersky E, Lewinsohn E (2011) Convergent evolution in plant specialized metabolism. Annu Rev Plant Biol 62:549–566

    Article  CAS  PubMed  Google Scholar 

  • Pohl T, Koorbanally C, Crouch NR et al (2001) Bufadienolides from Drimia robusta and Urginea altissima (Hyacinthaceae). Phytochemistry 58(4):557–561

    Article  CAS  PubMed  Google Scholar 

  • Porté S, Xavier Ruiz F, Giménez J et al (2013) Aldo–keto reductases in retinoid metabolism: search for substrate specificity and inhibitor selectivity. Chem Biol Interact 202(1–3):186–194

    Article  PubMed  CAS  Google Scholar 

  • Prachayasittikul S, Buraparuangsang P, Worachartcheewan A et al (2008) Antimicrobial and antioxidative activities of bioactive constituents from Hydnophytum formicarum Jack. Molecules 13(4):904–921

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar H, Ramagoni RK, Anchoju VC et al (2015) De novo transcriptome analysis of Allium cepa L. (onion) bulb to identify allergens and epitopes. PLoS One 10(8):e0135387

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raman SB, Rathinasabapathi B (2003) β-alanine N-methyltransferase of Limonium latifolium. cDNA cloning and functional expression of a novel N-methyltransferase implicated in the synthesis of the osmoprotectant beta-alanine betaine. Plant Physiol 132(3):1642–1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robertson G, Schein J, Chiu R et al (2010) De novo assembly and analysis of RNA-seq data. Nat Methods 7(11):909–912

    Article  CAS  PubMed  Google Scholar 

  • Ron M, Kajala K, Pauluzzi G et al (2014) Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model. Plant Physiol 166(2):455–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rønsted N, Symonds MR, Birkholm T et al (2012) Can phylogeny predict chemical diversity and potential medicinal activity of plants? A case study of Amaryllidaceae. BMC Evol Biol 12:182

    Article  PubMed  PubMed Central  Google Scholar 

  • Ru Q, Wang X, Liu T et al (2013) Physiological and comparative proteomic analyses in response to nitrogen application in an Amaryllidaceae plant, Lycoris aurea. Acta Physiol Plant 35(1):271–282

    Article  CAS  Google Scholar 

  • Salmela L, Rivals E (2014) LoRDEC: accurate and efficient long read error correction. Bioinformatics 30(24):3506–3514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlauer J, Rückert M, Wiesen B et al (1998) Characterization of enzymes from Ancistrocladus (Ancistrocladaceae) and Triphyophyllum (Dioncophyllaceae) catalyzing oxidative coupling of naphthylisoquinoline alkaloids to michellamines. Arch Biochem Biophys 350(1):87–94

    Article  CAS  PubMed  Google Scholar 

  • Schoch G, Goepfert S, Morant M et al (2001) CYP98A3 from Arabidopsis thaliana is a 3′-hydroxylase of phenolic esters, a missing link in the phenylpropanoid pathway. J Biol Chem 276(39):36566–36574

    Article  CAS  PubMed  Google Scholar 

  • Schulz MH, Zerbino DR, Vingron M et al (2012) Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics 28(8):1086–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schweigert N, Zehnder AJ, Eggen RI (2001) Chemical properties of catechols and their molecular modes of toxic action in cells, from microorganisms to mammals. Environ Microbiol 3(2):81–91

    Article  CAS  PubMed  Google Scholar 

  • Sengupta D, Naik D, Reddy AR (2015) Plant aldo–keto reductases (AKRs) as multi-tasking soldiers involved in diverse plant metabolic processes and stress defense: a structure-function update. J Plant Physiol 179:40–55

    Article  CAS  PubMed  Google Scholar 

  • Senthil-Kumar M, Mysore KS (2014) Tobacco rattle virus-based virus-induced gene silencing in Nicotiana benthamiana. Nat Protoc 9(7):1549–1562

    Article  CAS  PubMed  Google Scholar 

  • Shan Q, Wang Y, Li J et al (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31(8):686–688

    Article  CAS  PubMed  Google Scholar 

  • Simpson JT, Wong K, Jackman SD et al (2009) ABySS: a parallel assembler for short read sequence data. Genome Res 19(6):1117–1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith J, Grizot S, Arnould S et al (2006) A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences. Nucleic Acids Res 34(22):e149–e149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spannagl M, Martis MM, Pfeifer M et al (2013) Analysing complex Triticeae genomes—concepts and strategies. Plant Methods 9(1):35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stavrinides A, Tatsis EC, Foureau E et al (2015) Unlocking the diversity of alkaloids in Catharanthus roseus: nuclear localization suggests metabolic channeling in secondary metabolism. Chem Biol 22(3):336–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugano SS, Shirakawa M, Takagi J et al (2014) CRISPR/Cas9-mediated targeted mutagenesis in the liverwort Marchantia polymorpha L. Plant Cell Physiol 55(3):475–481

    Article  CAS  PubMed  Google Scholar 

  • Suhadolnik RJ, Fischer AG, Zulalian J (1962) The biogenic origin of the C6–C1 unit of lycorine. J Am Chem Soc 84(22):4348–4349

    Article  CAS  Google Scholar 

  • Suhadolnik RJ, Fischer AG, Zulalian J (1963a) Biogenesis of the Amaryllidaceae alkaloids. Part III. Phenylalanine and protocatechuic aldehyde as C6–C1 precursors of haemanthamine and lycorine. In: Proceedings of the chemical society of London, pp 132

  • Suhadolnik RJ, Fischer AG, Zulalian J (1963b) Biogenesis of the Amaryllidaceae alkaloids. II. Studies with whole plants, floral primordia and cell free extracts. Biochem Biophys Res Commun 11:208–212

    Article  CAS  PubMed  Google Scholar 

  • Sumner LW, Lei Z, Nikolau BJ et al (2015) Modern plant metabolomics: advanced natural product gene discoveries, improved technologies, and future prospects. Nat Prod Rep 32(2):212–229

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Hu Z, Chen R et al (2015) Targeted mutagenesis in soybean using the CRISPR-Cas9 system. Sci Rep 5:10342

    Article  PubMed  PubMed Central  Google Scholar 

  • Takos AM, Rook F (2012) Why biosynthetic genes for chemical defense compounds cluster. Trends Plant Sci 17(7):383–388

    Article  CAS  PubMed  Google Scholar 

  • Takos AM, Rook F (2013) Towards a molecular understanding of the biosynthesis of Amaryllidaceae alkaloids in support of their expanding medical use. Int J Mol Sci 14(6):11713–11741

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takos AM, Knudsen C, Lai D et al (2011) Genomic clustering of cyanogenic glucoside biosynthetic genes aids their identification in Lotus japonicus and suggests the repeated evolution of this chemical defence pathway. Plant J 68(2):273–286

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Matsuoka M, Yamanoto N et al (1989) Structure and characterization of a cDNA clone for phenylalanine ammonia-lyase from cut-injured roots of sweet potato. Plant Physiol 90(4):1403–1407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teutsch HG, Hasenfratz MP, Lesot A et al (1993) Isolation and sequence of a cDNA encoding the Jerusalem artichoke cinnamate 4-hydroxylase, a major plant cytochrome P450 involved in the general phenylpropanoid pathway. Proc Natl Acad Sci USA 90(9):4102–4106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsukazaki H, Yaguchi S, Sato S et al (2015) Development of transcriptome shotgun assembly-derived markers in bunching onion (Allium fistulosum). Mol Breeding 35(1):1–11

    Article  CAS  Google Scholar 

  • VanBuren R, Bryant D, Edger PP et al (2015) Single-molecule sequencing of the desiccation-tolerant grass Oropetium thomaeum. Nature. doi:10.1038/nature15714

    PubMed  Google Scholar 

  • Velten R, Erdelen C, Gehling M et al (1998) Cripowellin A and B, a novel type of Amaryllidaceae alkaloid from Crinum powellii. Tetrahedron Lett 39:1737–1740

    Article  CAS  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang R, Xu S, Jiang Y et al (2013) De novo sequence assembly and characterization of Lycoris aurea transcriptome using GS FLX titanium platform of 454 pyrosequencing. PLoS One 8(4):e60449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wetzl D, Berrera M, Sandon N et al (2015) Expanding the imine reductase toolbox by exploring the bacterial protein sequence space. ChemBioChem 16(12):1749–1756

    Article  CAS  PubMed  Google Scholar 

  • Wildman WC, Fales HM, Battersby AR (1962a) Biosynthesis in the Amaryllidaceae. The incorporation of 3-C14-tyrosine in Sprekelia formosissima. J Am Chem Soc 84(4):681–682

    Article  CAS  Google Scholar 

  • Wildman WC, Battersby AR, Breuer SW (1962b) Biosynthesis in the Amaryllidaceae. Incorporation of 3-C14-tyrosine and phenylalanine in Nerine bowdenii W. Wats. J Am Chem Soc 84(23):4599–4600

    Article  CAS  Google Scholar 

  • Wildman WC, Fales HM, Highet RJ et al (1962c) Biosynthesis in the Amaryllidaceae: Evidence for intact incorporation of norbelladine into lycorine, crinamine, and belladine. In: Proceedings of the chemical society of London, pp 180–181

  • Wyvekens N, Topkar VV, Khayter C et al (2015) Dimeric CRISPR RNA-guided FokI-dCas9 nucleases directed by truncated gRNAs for highly specific genome editing. Hum Gene Ther 26(7):425–431

    Article  CAS  PubMed  Google Scholar 

  • Xie K, Minkenberg B, Yang Y (2015) Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. PNAS 112(11):3570–3575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeo YS, Nybo SE, Chittiboyina AG et al (2013) Functional identification of valerena-1,10-diene synthase, a terpene synthase catalyzing a unique chemical cascade in the biosynthesis of biologically active sesquiterpenes in Valeriana officinalis. J Biol Chem 288(5):3163–3173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin K, Han T, Liu G et al (2015) A geminivirus-based guide RNA delivery system for CRISPR/Cas9 mediated plant genome editing. Sci Rep 5:14926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18(5):821–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Zhang J, Wei P et al (2014) The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol J 12(6):797–807

    Article  CAS  PubMed  Google Scholar 

  • Zhou SM, Chen LM, Liu SQ et al (2015) De novo assembly and annotation of the chinese chive (Allium tuberosum Rottler ex Spr.) cranscriptome using the illumina platform. PLoS One 10(7):e0133312

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zonneveld BJM (2008) The systematic value of nuclear DNA content for all species of Narcissus L. (Amaryllidaceae). Plant Syst Evol 275(1-2):109–132

    Article  CAS  Google Scholar 

  • Zonneveld B (2010) The involvement of Narcissus hispanicus Gouan in the origin of Narcissus bujei and of cultivated trumpet daffodils (Amaryllidaceae). Anales del Jardín Botánico de Madrid 67(1):29–39

    Article  Google Scholar 

Download references

Acknowledgments

This review was supported with the National Institutes of Health Award Number 1RC2GM092561 (NIGMS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toni M. Kutchan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kilgore, M.B., Kutchan, T.M. The Amaryllidaceae alkaloids: biosynthesis and methods for enzyme discovery. Phytochem Rev 15, 317–337 (2016). https://doi.org/10.1007/s11101-015-9451-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-015-9451-z

Keywords

Navigation