Skip to main content
Log in

Elm defence against herbivores and pathogens: morphological, chemical and molecular regulation aspects

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Elms (Ulmus spp.) have long been appreciated for their environmental tolerance, landscape and ornamental value, and the quality of their wood. Although elm trees are extremely hardy against abiotic stresses such as wind and pollution, they are susceptible to attacks of biotic stressors. Over 100 phytopathogens and invertebrate pests are associated with elms: fungi, bacteria and insects like beetles and moths, and to a lesser extent aphids, mites, viruses and nematodes. While the biology of the pathogen and insect vector of the Dutch elm disease has been intensively studied, less attention has been paid so far to the defence mechanisms of elms to other biotic stressors. This review highlights knowledge of direct and indirect elm defences against biotic stressors focusing on morphological, chemical and gene regulation aspects. First, we report how morphological defence mechanisms via barrier formation and vessel occlusion prevent colonisation and spread of wood- and bark-inhabiting fungi and bacteria. Second, we outline how secondary metabolites such as terpenoids (volatile terpenoids, mansonones and triterpenoids) and phenolics (lignans, coumarins, flavonoids) in leaves and bark are involved in constitutive and induced chemical defence mechanisms of elms. Third, we address knowledge on how the molecular regulation of elm defence is orchestrated through the interaction of a huge variety of stress- and defence-related genes. We conclude by pointing to the gaps of knowledge on the chemical and molecular mechanisms of elm defence against pest insects and diseases. An in-depth understanding of defence mechanisms of elms will support the development of sustainable integrated management of pests and diseases attacking elms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ELB:

Elm leaf beetle

EY:

Elm yellows

DED:

Dutch elm disease

IR:

Induced resistance

JA:

Jasmonic acid

MeJA:

Methyl jasmonate

PAL:

Phenylalanine-ammonia-lyase

ROS:

Reactive oxygen species

SA:

Salicylic acid

References

  • Anderson E (1934) The mucilage from slippery elm bark. J Biol Chem 104:163–170

    CAS  Google Scholar 

  • Aoun M, Rioux D, Simard M, Bernier L (2009) Fungal colonization and host defense reactions in Ulmus americana callus cultures inoculated with Ophiostoma novo-ulmi. Phytopathology 99:642–650

    Article  PubMed  Google Scholar 

  • Aoun M, Jacobi V, Boyle B, Bernier L (2010) Identification and monitoring of Ulmus americana transcripts during in vitro interactions with the Dutch elm disease pathogen Ophiostoma novo-ulmi. Physiol Mol Plant Pathol 74:254–266

    Article  CAS  Google Scholar 

  • Arimura G, Matsui K, Takabayashi J (2009) Chemical and molecular ecology of herbivore-induced plant volatiles: proximate factors and their ultimate functions. Plant Cell Physiol 50:911–923

    Article  CAS  PubMed  Google Scholar 

  • Baker EA (1982) Chemistry and morphology of plant epicuticular waxes. Academic Press, London

    Google Scholar 

  • Baker JE, Norris DM (1967) A feeding stimulant for Scolytus multistriatus (Coleoptera: Scolytidae) isolated from the bark of Ulmus americana. Ann Entomol Soc Am 60:1213

    Google Scholar 

  • Barbehenn RV, Constabel CP (2011) Tannins in plant–herbivore interactions. Phytochemistry 72:1551–1565

    Article  CAS  PubMed  Google Scholar 

  • Bate-Smith EC, Richens RH (1973) Flavonoid chemistry and taxonomy in Ulmus. Biochem Syst Ecol 1:141–146

    Article  CAS  Google Scholar 

  • Beckman CH (2000) Phenolic-storing cells: keys to programmed cell death and periderm formation in wilt disease resistance and in general defence responses in plants? Physiol Mol Plant Pathol 57:101–110

    Article  CAS  Google Scholar 

  • Bernier L, Aoun M, Bouvet GF, Comeau A, Dufour J, Naruzawa ES, Nigg M, Plourde KV (2015) Genomics of the Dutch elm disease pathosystem: are we there yet? iForest 8:149

    Article  Google Scholar 

  • Bettòlo GBM, Casinovi CG, Galeffi C (1965) A new class of quinones: sesquiterpenoid quinones of Mansonia altissima chev. Tetrahedron Lett 6:4857–4864

    Article  Google Scholar 

  • Beveridge RJ, Jones JKN, Lowe RW et al (1971) Structure of slippery elm mucilage (Ulmus Fulva). J Polym Sci Part C Polym Symp 36:461–466

    Article  Google Scholar 

  • Blanchette RA, Biggs AR (1992) Defense mechanisms of woody plants against fungi. Springer, Berlin

    Book  Google Scholar 

  • Bolyard MG, Hajela RK, Sticklen MB (1991) Microprojectile and Agrobacterium-mediated transformation of pioneer elm. J Arboric 17:34–37

    Google Scholar 

  • Bonsen KJM, Scheffer RJ, Elgersma DM (1985) Barrier zone formation as a resistance mechanism of elms to Dutch elm disease. IAWA Bull 6:1–77

    Article  Google Scholar 

  • Bosu PP, Wagner MR (2007) Effects of induced water stress on leaf trichome density and foliar nutrients of three elm (Ulmus) species: implications for resistance to the elm leaf beetle. Environ Entomol 36:595–601

    Article  PubMed  Google Scholar 

  • Bosu PP, Wagner MR (2008) Anatomical and nutritional factors associated with susceptibility of elms (Ulmus spp.) to the elm leaf beetle (Coleoptera: Chrysomelidae). J Econ Entomol 101:944–954

    Article  CAS  PubMed  Google Scholar 

  • Brauc S, De Vooght E, Claeys M et al (2012) Overexpression of arginase in Arabidopsis thaliana influences defence responses against Botrytis cinerea. Plant Biol 14:39–45

    Article  CAS  PubMed  Google Scholar 

  • Bryant JP, Reichardt PB, Clausen TP et al (1993) Effects of mineral nutrition on delayed inducible resistance in Alaska paper birch. Ecology 74:2072–2084

    Article  Google Scholar 

  • Büchel K, Malskies S, Mayer M et al (2011) How plants give early herbivore alert: Volatile terpenoids attract parasitoids to egg-infested elms. Basic Appl Ecol 12:403–412

    Article  CAS  Google Scholar 

  • Büchel K, McDowell E, Nelson W et al (2012) An elm EST database for identifying leaf beetle egg-induced defense genes. BMC Genom 13:242

    Article  CAS  Google Scholar 

  • Buiteveld JB, Van Der Werf B, Hiemstra JA (2015) Comparison of commercial elm cultivars and promising unreleased Dutch clones for resistance to Ophiostoma novo-ulmi. iForest 8:158

    Article  Google Scholar 

  • Burden RS, Kemp MS (1984) Sesquiterpene phytoalexins from Ulmus glabra. Phytochemistry 23:383–385

    Article  CAS  Google Scholar 

  • Byers JA, Svihra P, Koehler CS (1980) Attraction of elm bark beetles to cut limbs on elm. J Arboric 6:245–246

    Google Scholar 

  • Chai BL, Maqbool SB, Hajela RK et al (2002) Cloning of a chitinase-like cDNA (hs2), its transfer to creeping bentgrass (Agrostis palustris Huds.) and development of brown patch (Rhizoctonia solani) disease resistant transgenic lines. Plant Sci 163:183–193

    Article  CAS  Google Scholar 

  • Chen C-M, Chen Z-T, Hong Y-L (1990) A mansonone from Helicteres angustifolia. Phytochemistry 29:980–982

    Article  CAS  Google Scholar 

  • Cheng AX, Lou YG, Mao YB et al (2007) Plant terpenoids: biosynthesis and ecological functions. J Integr Plant Biol 49:179–186

    Article  CAS  Google Scholar 

  • Colazza S, McElfresh JS, Millar JG (2004) Identification of volatile synomones, induced by Nezara viridula feeding and oviposition on bean spp., that attract the egg parasitoid Trissolcus basalis. J Chem Ecol 30:945–964

    Article  CAS  PubMed  Google Scholar 

  • Corchete MP, Diez JJ, Valle T (1993) Phenylalanine ammonia-lyase activity in suspension cultures of Ulmus pumila and U. campestris treated with spores of Ceratocystis ulmi. Plant Cell Rep 13:111–114

    Article  CAS  PubMed  Google Scholar 

  • Crews LJ, McCully ME, Canny MJ (2003) Mucilage production by wounded xylem tissue of maize roots—time course and stimulus. Funct Plant Biol 30:755–766

    Article  CAS  Google Scholar 

  • Dahlsten DL, Rowney DL, Tait SM (1994) Development of integrated pest management programs in urban forests: the elm leaf beetle (Xanthogaleruca luteola (Müller)) in California, USA. For Ecol Manag 65:31–44

    Article  Google Scholar 

  • De Lorenzo G, D’Ovidio R, Cervone F (2001) The role of polygacturonase-inhibiting proteins (PGIPs) in defense against pathogenic fungi. Annu Rev Phytopathol 39:313–335

    Article  PubMed  Google Scholar 

  • De Rafael MA, Valle T, Babiano MJ et al (2001) Correlation of resistance and H2O2 production in Ulmus pumila and Ulmus campestris cell suspension cultures inoculated with Ophiostoma novo-ulmi. Physiol Plant 111:512–518

    Article  PubMed  Google Scholar 

  • Degenhardt J, Hiltpold I, Köllner TG et al (2009) Restoring a maize root signal that attracts insect-killing nematodes to control a major pest. Proc Natl Acad Sci USA 106:13213–13218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dicke M, Baldwin IT (2010) The evolutionary context for herbivore-induced plant volatiles: beyond the ‘cry for help’. Trends Plant Sci 15:167–175

    Article  CAS  PubMed  Google Scholar 

  • Dix ME, Cunningham RA, King RM (1996) Evaluating spring cankerworm (Lepidoptera: Geometridae) preference for Siberian elm clones. Environ Entomol 25:58–62

    Article  Google Scholar 

  • Dubery IA, Slater V (1997) Induced defence responses in cotton leaf disks by elicitors from Verticillium dahliae. Phytochemistry 44:1429–1434

    Article  CAS  Google Scholar 

  • Duchesne LC, Jeng RS, Hubbes M (1985) Accumulation of phytoalexins in Ulmus americana in response to infection by a nonaggressive and an aggressive strain of Ophiostoma ulmi. Can J Bot 63:678–680

    CAS  Google Scholar 

  • Duchesne LC, Hubbes M, Jeng RS (1986) Mansonone E and F accumulation in Ulmus pumila resistant to Dutch elm disease. Can J For Res 16:410–412

    Article  CAS  Google Scholar 

  • Duchesne LC, Jeng RS, Hubbes M et al (1990) Accumulation of mansonones E and F in elm callus cultures inoculated with Ophiostoma ulmi. Trees Struct Funct 4:187–190

    Article  Google Scholar 

  • Dumas MT, Strunz GM, Hubbes M et al (1983) Isolation and identification of six mansonones from Ulmus americana infected with Ceratocystis ulmi. Experientia 39:1089–1090

    Article  CAS  Google Scholar 

  • Dumas MT, Straunz GM, Hubbes M et al (1986) Inhibition of Ceratocystis ulmi by mansonones A, C, D, E, F, and G isolated from Ulmus americana. Eur J For Pathol 16:217–230

    Article  CAS  Google Scholar 

  • Durkovic J, Canova I, Lagana R et al (2013) Leaf trait dissimilarities between Dutch elm hybrids with a contrasting tolerance to Dutch elm disease. Ann Bot 111:215–227

    Article  CAS  PubMed  Google Scholar 

  • Elgersma DM (1970) Length and diameter of xylem vessels as factors in resistance of elms to Ceratocystis ulmi. Neth J Plant Pathol 76:179–182

    Article  Google Scholar 

  • Elgersma DM (1973) Tylose formation in elms after inoculation with Ceratocystis ulmi, a possible resistance mechanism. Neth J Plant Pathol 79:218–220

    Article  Google Scholar 

  • Elgersma DM, Overeem JC (1971) The relation of mansonones to resistance against dutch elm disease and their accumulation, as induced by several agents. Neth J Plant Pathol 77:168–174

    Article  CAS  Google Scholar 

  • Eyles A, Bonello P, Ganley R et al (2009) Induced resistance to pests and pathogens in trees. New Phytol 185:893–908

    Article  PubMed  Google Scholar 

  • Eynck C, Koopmann B, Karlovsky P et al (2009) Internal resistance in winter oilseed rape inhibits systemic spread of the vascular pathogen Verticillium longisporum. Phytopathology 99:802–811

    Article  CAS  PubMed  Google Scholar 

  • Fenning TM, Tymens SS, Gartland JS et al (1996) Transformation and regeneration of English elm using wild-type Agrobacterium tumefaciens. Plant Sci 116:37–46

    Article  CAS  Google Scholar 

  • Fineschi S, Loreto F (2012) Leaf volatile isoprenoids: an important defensive armament in forest tree species. iForest 5:13–17

    Article  Google Scholar 

  • Gagnon C (1968) Peroxidase in healthy and diseased elm trees investigated by the benzidine histochemical technique. Can J Bot 46:1491–1494

    Article  CAS  Google Scholar 

  • Gange AC (1995) Aphid performance in an alder (Alnus) hybrid zone. Ecology 76:2074–2083

    Article  Google Scholar 

  • Gardner JM, Feldman AW, Stamper DH (1983) Role and fate of bacteria in vascular occlusions of citrus. Physiol Plant Pathol 23:295–309

    Article  Google Scholar 

  • Gartland JS, McHugh AT, Brasier CM et al (2000) Regeneration of phenotypically normal English elm (Ulmus procera) plantlets following transformation with an Agrobacterium tumefaciens binary vector. Tree Physiol 20:1063

    Article  CAS  Google Scholar 

  • Gartland KMA, McHugh AT, Crow RM et al (2005) 2004 SIVB congress symposium proceeding: biotechnological progress in dealing with dutch elm disease. In Vitro Cell Dev Plant 41:364–367

    Article  Google Scholar 

  • Gershenzon J, Croteau R (1991) Terpenoids. The chemical participants. Academic Press, New York

    Google Scholar 

  • Gershenzon J, Dudareva N (2007) The function of terpene natural products in the natural world. Nat Chem Biol 3:408–414

    Article  CAS  PubMed  Google Scholar 

  • Ghelardini L, Santini A (2009) Avoidance by early flushing: a new perspective on Dutch elm disease research. iForest 2:143–153

    Article  Google Scholar 

  • Gill RE, Hirst EL, Jones JKN (1946) Constitution of the mucilage from the bark of Ulmus Fulva (slippery elm mucilage). Part II. The sugars formed in the hydrolysis of the methylated mucilage. J Chem Soc 0:1025–1029

    Article  CAS  Google Scholar 

  • Glas J, Schimmel B, Alba J et al (2012) Plant glandular trichomes as targets for breeding or engineering of resistance to herbivores. Int J Mol Sci 13:17077–17103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gnonlonfin GJB, Sanni A, Brimer L (2012) Review scopoletin—a coumarin phytoalexin with medicinal properties. Crit Rev Plant Sci 31:47–56

    Article  CAS  Google Scholar 

  • Griebel T, Zeier J (2010) A role for beta-sitosterol to stigmasterol conversion in plant-pathogen interactions. Plant J 63:254–268

    Article  CAS  PubMed  Google Scholar 

  • Hartmann AM, Abarzua S, Schlichting A et al (2011) Effects of elm bark extracts from Ulmus laevis on human chorion carcinoma cell lines. Arch Gynecol Obstet 284:1265–1269

    Article  PubMed  Google Scholar 

  • Hegnauer R (1973) Chemotaxonomie der Pflanzen. Band 6. Dicotyledoneae: Rafflesiaceae - Zygophyllaceae, vol 6. Birkhäuser, Basel und Stuttgart

    Book  Google Scholar 

  • Hegnauer R (1989) Chemotaxonomie der Pflanzen. Band 8. Nachträge zu Band 3 und 4 (Acanthaceae-Lythraceae). Birkhäuser, Basel

    Google Scholar 

  • Hegnauer R (1990) Chemotaxonomie der Pflanzen. Band 9. Nachträge zu Band 5 und 6 (Magnoliaceae-Zygophyllaceae). Birkhäuser, Basel

    Google Scholar 

  • Heybroek HM (2015) The elm, tree of milk and wine. iForest 8:181

    Article  Google Scholar 

  • Hilker M, Fatouros NE (2015) Plant responses to insect egg deposition. Annu Rev Entomol 60:493–515

    Article  CAS  PubMed  Google Scholar 

  • Hilker M, Meiners T (2006) Early herbivore alert: insect eggs induce plant defense. J Chem Ecol 32:1379–1397

    Article  CAS  PubMed  Google Scholar 

  • Hilker M, Meiners T (2010) How do plants “notice” attack by herbivorous arthropods? Biol Rev 85:267–280

    Article  PubMed  Google Scholar 

  • Hilker M, Meiners T (2011) Plants and insect eggs: how do they affect each other? Phytochemistry 72:1612–1623

    Article  CAS  PubMed  Google Scholar 

  • Hough L, Jones JKN, Hirst EL (1950) Chemical constitution of slippery elm mucilage: isolation of 3-methyl d-galactose from the hydrolysis products. Nature 165:34–35

    Article  CAS  PubMed  Google Scholar 

  • Hubbes M (2004) Induced resistance for the control of Dutch elm disease. Invest Agrar Sist Recur For 13:185–196

    Google Scholar 

  • Jeng RS, Alfenas AC, Hubbes M et al (1983) Presence and accumulation of fungitoxic substances against Ceratocystis ulmi in Ulmus americana: possible relation to induced resistance. Eur J For Pathol 13:239–244

    Article  Google Scholar 

  • Jia Z, Zou B, Wang X et al (2010) Quercetin-induced H2O2 mediates the pathogen resistance against Pseudomonas syringae pv. Tomato DC3000 in Arabidopsis thaliana. Biochem Biophys Res Commun 396:522–527

    Article  CAS  PubMed  Google Scholar 

  • Jones AM, Chattopadhyay A, Shukla M et al (2012) Inhibition of phenylpropanoid biosynthesis increases cell wall digestibility, protoplast isolation, and facilitates sustained cell division in American elm (Ulmus americana). BMC Plant Biol 12:75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung H-J, Jeon H-J, Lim E-J et al (2007) Anti-angiogenic activity of the methanol extract and its fractions of Ulmus davidiana var. japonica. J Ethnopharmacol 112:406–409

    Article  PubMed  Google Scholar 

  • Kappers IF, Aharoni A, van Herpen TWJM et al (2005) Genetic engineering of terpenoid metabolism attracts, bodyguards to Arabidopsis. Science 309:2070–2072

    Article  CAS  PubMed  Google Scholar 

  • Karban R, Baldwin IT (1997) Induced responses to herbivory. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Karkonen A, Murigneux A, Martinant JP et al (2005) UDP-glucose dehydrogenases of maize: a role in cell wall pentose biosynthesis. Biochem J 391:409–415

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kielbaso JG, Kennedy MK (1983) Urban forestry and entomology: a current appraisal. In: Frankie GW, Koehler CS (eds) Urban entomology: interdisciplinary perspectives. Praeger, New York, pp 423–440

    Google Scholar 

  • Kim JP, Kim WG, Koshino H et al (1996) Sesquiterpene O-naphthoquinones from the root bark of Ulmus davidiana. Phytochemistry 43:425–430

    Article  CAS  PubMed  Google Scholar 

  • Kim T-W, Youm S-Y, Shin S-K et al (2012) Chemopreventive effects of elm tree bark extract on Helicobacter pylori-associated mouse gastric carcinogenesis. Basic Appl Pathol 5:31–38

    Article  Google Scholar 

  • Klimetzek D (1993) Baumarten und ihre Schadinsekten auf der Nordhalbkugel. Mitt Dtsch Ges Allg Angew Ent 8:505–509

    Google Scholar 

  • Kloepper JW, Tuzun S, Kuć JA (1992) Proposed definitions related to induced disease resistance. Biocontrol Sci Technol 2:349–351

    Article  Google Scholar 

  • Kolosova N, Bohlmann J (2012) Conifer defense against insects and fungal pathogens. In: Matyssek R, Schnyder H, Oßwald W et al (eds) Growth and defence in plants, vol 220. Springer, Berlin, pp 85–109

    Chapter  Google Scholar 

  • Kuzniak E, Urbanek H (2000) The involvement of hydrogen peroxide in plant responses to stresses. Acta Physiol Plant 22:195–203

    Article  CAS  Google Scholar 

  • Kwong RM, Field RP (1994) Elm leaf beetle history and distribution in southern Victoria. Plant Prot Q 9:43–47

    Google Scholar 

  • La Camera S, Balague C, Gobel C et al (2009) The Arabidopsis patatin-like protein 2 (PLP2) plays an essential role in cell death execution and differentially affects biosynthesis of oxylipins and resistance to pathogens. Mol Plant Microbe Interact 22:469–481

    Article  PubMed  CAS  Google Scholar 

  • Laitinen ML, Julkunen-Tiitto R, Yamaji K et al (2004) Variation in birch bark secondary chemistry between and within clones: implications for herbivory by hares. Oikos 104:316–326

    Article  CAS  Google Scholar 

  • Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Ann Rev Plant Phys 48:251–275

    Article  CAS  Google Scholar 

  • Loureiro J, Rodriguez E, Gomes  et al (2007) Genome size estimations on Ulmus minor Mill., Ulmus glabra Huds., and Celtis australis L. using flow cytometry. Plant Biol 9:541–544

    Article  CAS  PubMed  Google Scholar 

  • Lucas PW, Turner IM, Dominy NJ et al (2000) Mechanical defences to herbivory. Ann Bot 86:913–920

    Article  Google Scholar 

  • Maag D, Erb M, Köllner TG, Gershenzon J (2015) Defensive weapons and defense signals in plants: Some metabolites serve both roles. BioEssays 37:167–174

    Article  PubMed  Google Scholar 

  • Malviya R, Srivastava P, Kulkarni GT (2011) Applications of mucilages in drug delivery—a review. Adv Biol Res 5:1–07

    CAS  Google Scholar 

  • Mandal S, Mitra A (2007) Reinforcement of cell wall in roots of Lycopersicon esculentum through induction of phenolic compounds and lignin by elicitors. Physiol Mol Plant Pathol 71:201–209

    Article  CAS  Google Scholar 

  • Martemyanov V, Dubovskiy I, Belousova I et al (2012) Rapid induced resistance of silver birch affects both innate immunity and performance of gypsy moths: the role of plant chemical defenses. Arthropod Plant Interact 6:507–518

    Article  Google Scholar 

  • Martin D, Garcia-Vallejo MC, Lopez D et al (2004) Elm bark components and their potential influence on bark beetle feeding. Invest Agrar Sist Recur For 13:227–235

    Google Scholar 

  • Martin JA, Solla A, Woodward S et al (2005) Fourier transform-infrared spectroscopy as a new method for evaluating host resistance in the Dutch elm disease complex. Tree Physiol 25:1331–1338

    Article  CAS  PubMed  Google Scholar 

  • Martin JA, Solla A, Woodward S, Gil L (2007) Detection of differential changes in lignin composition of elm xylem tissues inoculated with Ophiostoma novo-ulmi using Fourier transform-infrared spectroscopy. For Pathol 37:187–191

    Google Scholar 

  • Martin JA et al (2008) Metabolic fingerprinting allows discrimination between Ulmus pumila and U. minor, and between U. minor clones of different susceptibility to Dutch elm disease. For Pathol 38:244–256

    Google Scholar 

  • Martin JA, Solla A, Esteban LG, de Palacios P, Gil L (2009) Bordered pit and ray morphology involvement in elm resistance to Ophiostoma novo-ulmi. Can J For Res 39:420–429

    Article  Google Scholar 

  • Martin JA, Solla A, Ruiz-Villar M, Gil L (2013) Vessel length and conductivity of Ulmus branches: ontogenetic changes and relation to resistance to Dutch elm disease. Trees 27:1239–1248

    Article  Google Scholar 

  • Martin JA, Solla A, Venturas M et al (2015) Seven Ulmus minor clones tolerant to Ophiostoma novo-ulmi registered as forest reproductive material in Spain. iForest 8:172

    Article  Google Scholar 

  • Martín JA, Solla A, García-Vallejo MC, Gil L (2012) Chemical changes in Ulmus minor xylem tissue after salicylic acid or carvacrol treatments are associated with enhanced resistance to Ophiostoma novo-ulmi. Phytochemistry 83:104–109

    Article  PubMed  CAS  Google Scholar 

  • Martin-Benito D, Garcia-Vallejo MC, Pajares JA et al (2005) Triterpenes in elms in Spain. Can J For Res 35:199–205

    Article  CAS  Google Scholar 

  • McLeod G (2005) The pathogen causing Dutch elm disease makes host trees attract insect vectors. Proc R Soc 272:2499–2503

    Article  Google Scholar 

  • Meiners T, Hilker M (1997) Host location in Oomyzus gallerucae (Hymenoptera: Eulophidae), an egg parasitoid of the elm leaf beetle Xanthogaleruca luteola (Coleoptera: Chrysomelidae). Oecologia 112:87–93

    Article  Google Scholar 

  • Meiners T, Hilker M (2000) Induction of plant synomones by oviposition of a phytophagous insect. J Chem Ecol 26:221–232

    Article  CAS  Google Scholar 

  • Meiners T, Westerhaus C, Hilker M (2000) Specificity of chemical cues used by a specialist egg parasitoid during host location. Entomol Exp Appl 95:151–159

    Article  Google Scholar 

  • Metodiewa D, Jaiswal AK, Cenas N et al (1999) Quercetin may act as a cytotoxic prooxidant after its metabolic activation to semiquinone and quinoidal product. Free Radic Biol Med 26:107–116

    Article  CAS  PubMed  Google Scholar 

  • Miller F (2000) Insect resistance of elm genotypes. In: Dunn C (ed) The elms: breeding, conservation, and disease management. Kluwer, Boston

    Google Scholar 

  • Miller F, Ware G (1994) Preference for and suitability of selected elms, Ulmus spp. and their hybrids for the elm leaf beetle, Pyrrhalta luteola (Coleoptera: Chrysomelidae). J Environ Hortic 12:231–235

    Google Scholar 

  • Miller F, Ware G (1999) Resistance of elms of the Ulmus davidiana complex to defoliation by the adult elm leaf beetle (Coleoptera: Chrysomelidae). J Econ Entomol 92:1147–1150

    Article  CAS  Google Scholar 

  • Mithöfer A, Boland W (2012) Plant defense against herbivores: chemical aspects. Annu Rev Plant Biol 63:431–450

    Article  PubMed  CAS  Google Scholar 

  • Mittempergher L (2000) Elm Yellows in Europe. In: Dunn C (ed) The elms: breeding, conservation, and disease management. Kluwer, Boston, pp 103–119

    Chapter  Google Scholar 

  • Mittempergher L, Santini A (2004) The history of elm breeding. Invest Agrar Sist Recur For 13:161–177

    Google Scholar 

  • Muchero W, Labbé J, Ranjan P et al (2014) Genome resequencing in Populus: Revealing large-scale genome variation and implications on specialized-trait genomics. In: Fenning T (ed) Challenges and Opportunities for the World’s Forests in the 21st Century, vol 81. Springer, Netherlands

    Google Scholar 

  • Myburg A, Grattapaglia D, Tuskan G et al (2011) The Eucalyptus grandis genome project: Genome and transcriptome resources for comparative analysis of woody plant biology. BMC Proc 5:I20

    Article  PubMed Central  Google Scholar 

  • Myers DF, Strobel GA (1983) Pseudomonas syringae as a microbial antagonist of Ceratocystis ulmi in the apoplast of American elm. Trans Brit Mycol Soc 80:389–394

    Article  Google Scholar 

  • Naoumkina MA, Zhao QA, Gallego-Giraldo L et al (2010) Genome-wide analysis of phenylpropanoid defence pathways. Mol Plant Pathol 11:829–846

    CAS  PubMed  Google Scholar 

  • Nasmith C, Jeng R, Hubbes M (2008a) A comparison of in vivo targeted gene expression during fungal colonization of DED-susceptible Ulmus americana. Forest Pathol 38:104–112

    Article  Google Scholar 

  • Nasmith C, Jeng R, Hubbes M (2008b) Targeted gene analysis in Ulmus americana and U. pumila tissues. Forest Pathol 38:90–103

    Article  Google Scholar 

  • Newhouse A, Schrodt F, Liang H et al (2007) Transgenic American elm shows reduced Dutch elm disease symptoms and normal mycorrhizal colonization. In: Fladung M, Ewald D (eds) Plant Cell Reports, vol 26. Springer, Berlin, pp 977–987

    Google Scholar 

  • Novriyanti E, Aoyama C, Watanabe M et al (2010) Plant defense characteristics and hypotheses in birch species. Eurasian J Forest Res 13:77–85

    Google Scholar 

  • Oliveira H, Sousa A, Alves A et al (2012) Inoculation with Ophiostoma novo-ulmi subsp americana affects photosynthesis, nutrition and oxidative stress in in vitro Ulmus minor plants. Environ Exp Bot 77:146–155

    Article  CAS  Google Scholar 

  • Osier T, Lindroth R (2001) Effects of genotype, nutrient availability, and defoliation on aspen phytochemistry and insect performance. J Chem Ecol 27:1289–1313

    Article  CAS  PubMed  Google Scholar 

  • Ouellette GB, Rioux D, Simard M et al (2004) Ultrastructure of the alveolar network and its relation to coating on vessel walls in elms infected by Ophiostoma novo-ulmi and in other plants affected with similar wilt diseases. Investig Agrar: Sist Recur Forest 13:147–160

    Google Scholar 

  • Ouellette GB, Charest PM, Chamberland H (2011) A review of ultrastructural and ultracytochemical studies of infection processes in some plant wilt diseases: the opaque matter extensively involved, its links with pathogen elements, insights into its nature. Microsc Microanal 17:137–155

    Article  CAS  PubMed  Google Scholar 

  • Overeem JC, Elgersma DM (1970) Accumulation of mansonones E and F in Ulmus hollandica infected with Ceratocystis ulmi. Phytochemistry 9:1949–1952

    Article  CAS  Google Scholar 

  • Pajares JA (2004) Elm breeding for resistance against bark beetles. Forest Syst 13:207–215

    Google Scholar 

  • Paluch G, Miller F, Zhu J et al (2006) Influence of elm foliar chemistry for the host suitability of the Japanese beetle, Popilla japonica, and the gypsy moth, Lymantria dispar. J Agri Urban Entomol 23:209–223

    CAS  Google Scholar 

  • Pearce RB (1996) Antimicrobial defences in the wood of living trees. New Phytol 132:203–233

    Article  CAS  Google Scholar 

  • Perdiguero P, Venturas M, Cervera MT et al (2015) Massive sequencing of Ulmus minor’s transcriptome provides new molecular tools for a genus under the constant threat of Dutch elm disease. Front Plant Sci 6:541

    Article  PubMed  PubMed Central  Google Scholar 

  • Pérez-de-Luque A, Lozano MD, Cubero JI et al (2006) Mucilage production during the incompatible interaction between Orobanche crenata and Vicia sativa. J Exp Bot 57:931–942

    Article  PubMed  Google Scholar 

  • Rajput KS, Sanghvi GV, Koyani RD et al (2009) Anatomical changes in the stems of Azadirachta indica (meliaceae) infected by pathogenic fungi. IAWA J 30:27–36

    Article  Google Scholar 

  • Ralph SG (2009) Studying Populus defenses against insect herbivores in the post-genomic era. Crit Rev Plant Sci 28:335–345

    Article  CAS  Google Scholar 

  • Rauscher KJ, Lester DT, Smallcy EB (1974) Response of elm species and clones to inoculation with Verticillium albo-atrum. Phytopathology 64:702–705

    Article  Google Scholar 

  • Richens RH (1983) Elm. Cambridge University Press, Cambridge

    Google Scholar 

  • Rioux D, Ouellette GB (1991) Barrier zone formation in host and nonhost trees inoculated with Ophiostoma ulmi. I. Anatomy and histochemistry. Can J Bot 69:2055–2073

    Google Scholar 

  • Rioux D, Chamberland H, Simard M et al (1995) Suberized tyloses in trees: An ultrastructural and cytochemical study. Planta 196:125–140

    Article  CAS  Google Scholar 

  • Rioux D, Nicole M, Simard M et al (1998) Immunocytochemical evidence that secretion of pectin occurs during gel (gum) and tylosis formation in trees. Phytopathology 88:494–505

    Article  CAS  PubMed  Google Scholar 

  • Rowe JW, Seikel MK, Roy DN et al (1972) Chemotaxonomy of Ulmus. Phytochemistry 11:2513–2517

    Article  CAS  Google Scholar 

  • Sacchetti P, Tiberi R, Mittempergher L (1990) Preference of Scolytus multistriatus (Marsham) during the gonad maturation phase between two species of elm. Redia 73:347–354

    Google Scholar 

  • Salminen J-P, Karonen M (2011) Chemical ecology of tannins and other phenolics: we need a change in approach. Funct Ecol 25:325–338

    Article  Google Scholar 

  • Santamour FS Jr (1972) Flavonoid Distribution in Ulmus. B Torrey Bot Club 99:127–131

    Article  CAS  Google Scholar 

  • Santini A, Faccoli M (2015) Dutch elm disease and elm bark beetles: a century of association. iForest 8:126

    Article  Google Scholar 

  • Schreiber LR (1967) A soft rot of elm root cuttings caused by Fusarium solani. Phytopathology 57:920–921

    Google Scholar 

  • Schroeder R, Forstreuter M, Hilker M (2005) A plant notices insect egg deposition and changes its rate of photosynthesis. Plant Physiol 138:470–477

    Article  CAS  Google Scholar 

  • Schütt P, Weisgerber H, Schuck HJ et al (1995). Enzyklopädie der Holzgewächse, Ulmus III-2. 37. Erg Lfg, 9/04

  • Schwachtje J, Baldwin IT (2008) Why does herbivore attack reconfigure primary metabolism? Plant Physiol 146:845–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seikel MK, Hostettler FD, Johnson DB (1968) Lignans of Ulmus thomasii heartwood—I: Thomasic acid. Tetrahedron 24:1475–1488

    Article  CAS  Google Scholar 

  • Sharan K, Mishra JS, Swarnkar G et al (2011) A novel quercetin analogue from a medicinal plant promotes peak bone mass achievement and bone healing after injury and exerts an anabolic effect on osteoporotic bone: the role of aryl hydrocarbon receptor as a mediator of osteogenic action. J Bone Miner Res 26:2096–2111

    Article  CAS  PubMed  Google Scholar 

  • Sherman SL, Giannasi DE (1988) Foliar flavonoids of Ulmus in eastern North America. Biochem Syst Ecol 16:51–56

    Article  Google Scholar 

  • Shigo AL (1984) Compartmentalization: a conceptual framework for understanding how trees grow and defend themselves. Annu Rev Phytopathol 22:189–214

    Article  Google Scholar 

  • Shigo AL et al (1986) Patterns of starch reserves in healthy and diseased American elms. Can J Forest Res 16:204–210

    Article  Google Scholar 

  • Sinclair WA, Zahand JP, Melching JB (1975) Localization of infection in American elms resistant to Ceratocystis ulmi. Phytopathology 65:129–133

    Article  Google Scholar 

  • Sinclair WA, Townsend AM, Griffiths HM et al (2000) Responses of six Eurasian Ulmus cultivars to a North American elm yellows phytoplasma. Plant Dis 84:1266–1270

    Article  Google Scholar 

  • Slama K (1979) Insect hormone and antihormones in plants pages. Academic Press, New York

    Google Scholar 

  • Smith DR, Altenhofer E (2011) A new elm leafmining sawfly (Hymenoptera: Tenthredinidae) from Russia. Proc Entomol Soc Wash 113:50–56

    Article  Google Scholar 

  • Smith CM, Clement SL (2012) Molecular bases of plant resistance to arthropods. Annu Rev Entomol 57:309–328

    Article  CAS  PubMed  Google Scholar 

  • Soetens P, Rowellrahier M, Pasteels JM (1991) Influence of phenolglucosides and trichome density on the distribution of insects herbivores on willows. Entomol Exp Appl 59:175–187

    Article  CAS  Google Scholar 

  • Solla A, Gil L (2003) Evaluating Verticillium dahliae for biological control of Ophiostoma novo-ulmi in Ulmus minor. Plant Pathol 52:579–585

    Article  Google Scholar 

  • Stam JM, Kroes A, Li Y, Gols R, van Loon JJ, Poelman EH, Dicke M (2014) Plant interactions with multiple insect herbivores: from community to genes. Plant Biol 65:689

    Article  CAS  Google Scholar 

  • Sticklen MB, Sherald J (1993) Dutch elm disease research: cellular and molecular approaches. Springer-Verlag, New York

    Book  Google Scholar 

  • Sticklen M, Bolyard M, Hajela R et al (1991) Molecular and cellular aspects of Dutch elm disease. Phytoprotection 72:1–13

    Article  CAS  Google Scholar 

  • Stipes RJ, Campana RJ (1981) Compendium of elm diseases. American Phytopathological Society, Minnesota

    Google Scholar 

  • Strunz GM, C-m Yu, Salonius A (1989) Formation of the ortho-quinone mansonone C from 7-hydroxycadalene on silica gel. Phytochemistry 28:2861–2863

    Article  CAS  Google Scholar 

  • Sutherland ML, Mittempergher L, Brasier CM (1995) Control of Dutch elm disease by induced host resistance. Eur J Forest Path 25:307–315

    Article  Google Scholar 

  • Tian D, Tooker J, Peiffer M, Chung S et al (2012) Role of trichomes in defense against herbivores: comparison of herbivore response to woolly and hairless trichome mutants in tomato (Solanum lycopersicum). Planta 236:1053–1066

    Article  CAS  PubMed  Google Scholar 

  • Tippett JT, Shigo AL (1981) Barrier zone formation-a mechanism of tree defense against vascular pathogens. IAWA Bull 2:163–168

    Article  Google Scholar 

  • Tuskan GA, DiFazio S, Jansson S et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604

    Article  CAS  PubMed  Google Scholar 

  • Tuzun S, Bent E (2006) Multigenic and induced systemic resistance in plants. Springer, New York

    Book  Google Scholar 

  • Valle T, López JL, Hernández JM et al (1997) Antifungal activity of scopoletin and its differential accumulation in Ulmus pumila and Ulmus campestris cell suspension cultures infected with Ophiostoma ulmi spores. Plant Sci 125:97–101

    Article  CAS  Google Scholar 

  • van Dam NM, Heil M (2011) Multitrophic interactions below and above ground: en route to the next level. J Ecol 99:77–88

    Article  Google Scholar 

  • Vander Mijnsbrugge K, Beeckman H, De Rycke R et al (2000) Phenylcoumaran benzylic ether reductase, a prominent poplar xylem protein, is strongly associated with phenylpropanoid biosynthesis in lignifying cells. Planta 211:502–509

    Article  CAS  PubMed  Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J et al (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42:833–839

    Article  CAS  PubMed  Google Scholar 

  • Velikova V, Salerno G, Frati F et al (2010) Influence of feeding and oviposition of phytophagous pentatomids on photosynthesis of herbaceous plants. J Chem Ecol 36:629–641

    Article  CAS  PubMed  Google Scholar 

  • Veluthakkal R, Dasgupta MG (2010) Pathogenesis-related genes and proteins in forest tree species. Trees-Struct Funct 24:993–1006

    Article  CAS  Google Scholar 

  • Vet LEM, Dicke M (1992) Ecology of Infochemical use by natural enemies in a tritrophic context. Annu Rev Entomol 37:141–172

    Article  Google Scholar 

  • Wang D, Xia M, Cui Z (2006) New triterpenoids isolated from the root bark of Ulmus pumila L. Chem Pharm Bull 54:775–778

    Article  PubMed  Google Scholar 

  • Watts CR, Rousseau B (2012) Slippery elm, its biochemistry, and use as a complementary and alternative treatment for laryngeal Irritation. J Inve Biochem 1:17–23

    Article  Google Scholar 

  • Webber JF, Kirby SG (1983) Host feeding preference by Scolytus scolytus. In: Research on Dutch Elm Disease in Europe. Forestry Commission Bull 60:47-49

  • Wegener R (2002) Identifizierung und Synthese von Inhaltsstoffen aus Blattkäfern und Pflanzen mit biologischer Aktivität in tritrophischen Systemen. TENEA, Berlin, Germany

    Google Scholar 

  • Wegener R, Schulz S, Meiners T et al (2001) Analysis of volatiles induced by oviposition of elm leaf beetle Xanthogaleruca luteola on Ulmus minor. J Chem Ecol 27:499–515

    Article  CAS  PubMed  Google Scholar 

  • Weidhaas JAJ (1979) Spider mites and other Acarina on trees and shrubs. J Arbor 5:9–15

    Google Scholar 

  • Wiegrefe SJ, Sytsma KJ, Guries RP (1994) Phylogeny of elm (Ulmus, Ulmaceae): molecular evidence for a sectional classification. Syst Bot 19:590–612

    Article  Google Scholar 

  • Witzell J, Martin JA (2008) Phenolic metabolites in the resistance of northern forest trees to pathogens—past experiences and future prospects. Can J Forest Res 38:2711–2727

    Article  Google Scholar 

  • Wu WD, Jeng RS, Hubbes M (1989) Toxic effects of elm phytoalexin mansonones on Ophiostoma ulmi, the causal agent of dutch elm disease. Eur J Forest Pathol 19:343–357

    Article  Google Scholar 

  • Xiao Y, Wang Q, Erb M et al (2012) Specific herbivore-induced volatiles defend plants and determine insect community composition in the field. Ecol Lett 15:1130–1139

    Article  CAS  PubMed  Google Scholar 

  • Xu Q, Chen LL, Ruan XA et al (2013) The draft genome of sweet orange (Citrus sinensis). Nat Genet 45:59–92

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Baskin JM, Baskin CC et al (2012) More than just a coating: ecological importance, taxonomic occurrence and phylogenetic relationships of seed coat mucilage. Perspect Plant Ecol Evol Syst 14:434–442

    Article  Google Scholar 

  • Young CE, Hall RW (1986) Factors influencing suitability of elms for elm leaf beetle, Xanthogaleruca luteola (Coleoptera: Chrysomelidae). Environ Entomol 15:843–849

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful for the support of the German Research Foundation (= Deutsche Forschungsgemeinschaft DFG (Me 1810/4-1.2 and Fe 778/1-1.2, CRC 973) and the Max Planck Society. We thank five anonymous reviewers for providing valuable comments on earlier versions of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerstin Büchel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Büchel, K., Fenning, T., Gershenzon, J. et al. Elm defence against herbivores and pathogens: morphological, chemical and molecular regulation aspects. Phytochem Rev 15, 961–983 (2016). https://doi.org/10.1007/s11101-015-9442-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-015-9442-0

Keywords

Navigation