Skip to main content
Log in

Myrosinase in Brassicaceae: the most important issue for glucosinolate turnover and food quality

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Glucosinolates and their degradation products, isothiocyanates, have been widely identified by their benefits to human nutrition. Plant myrosinase, is an enzyme found in Brassicaceae family with an essential role on the glucosinolates conversion to isothiocyanates. In this review, we highlight recent progress in myrosinase, with particular emphasis on the involvement on in vivo glucosinolates turnover and the regulation during plant development and in response to environmental changes. Also, the myrosinase as influenced by some intrinsic and extrinsic factors, during postharvest and food processing such as pH, temperature, and pressure is examined as a challenge for increasing isothiocyanates bioactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahuja I, de Vos RCH, Bones AM, Hall RD (2010a) Plant molecular stress responses face climate change. Trends Plant Sci 15:664–674

    Article  CAS  PubMed  Google Scholar 

  • Ahuja I, Rohloff J, Bones AM (2010b) Defence mechanisms of Brassicaceae: implications for plant–insect interactions and potential for integrated pest management. A review. Agron Sustain Dev 30:311–348

    Article  Google Scholar 

  • Andréasson E, Jørgensen LB (2003) Chapter four localization of plant myrosinases and glucosinolates. Phytochem 37:79–99

    Google Scholar 

  • Angelino D, Jeffery E (2014) Glucosinolate hydrolysis and bioavailability of resulting isothiocyanates: focus on glucoraphanin. J Funct Food 7:67–76

    Article  CAS  Google Scholar 

  • Bjorkman R, Lonnerdal B (1973) Studies on myrosinases. Enzymatic properties of myrosinases from Sinapsis alba and Brassica napus seeds. Biochim Biophys Acta 327:121–131

    Article  CAS  PubMed  Google Scholar 

  • Bones AM, Rossiter JT (1996) The myrosinase–glucosinolate system, its organization and biochemistry. Physiol Plant 97:194–208

    Article  CAS  Google Scholar 

  • Burmesiter WP, Cottaz S, Driguez H, Iori R, Palmieri S, Henrissat B (1997) The crystal structures of Sinapis alba myrosinase and a covalent glycosyl–enzyme intermediate provide insights into the substrate recognition and active-site machinery of an S-glycosidase. Structure 5:663–676

    Article  Google Scholar 

  • Capella AN, Menossi M, Arruda P, Benedetti CE (2001) COI1 affects myrosinase activity and controls the expression of two flower-specific myrosinase-binding protein homologues in Arabidopsis. Planta 213:691–699

    Article  CAS  PubMed  Google Scholar 

  • Conaway CC, Getahun SM, Liebes LL, Pusateri DJ, Topham DKW, Botero-Omary M, Chung FL (2000) Disposition of glucosinolates and sulforaphane in humans after ingestion of steamed and fresh broccoli. Nutr Cancer 38:168–178

    Article  CAS  PubMed  Google Scholar 

  • Cordeiro RP, Doria JH, Zhanel GG, Sparling R, Holley RA (2015) Role of glycoside hydrolase genes in sinigrin degradation by E. coli O157:H7. Int J Food Microbiol 205:105–111

    Article  CAS  PubMed  Google Scholar 

  • Dorn KM, Fankhauser JD, Wyse DL, Marks MD (2015) A draft genome of field pennycress (Thlaspi arvense) provides tools for the domestication of a new winter biofuel crop. DNA Res 22:1–11

    Article  Google Scholar 

  • Earnshaw RG, Appleyard J, Hurst RM (1995) Understanding physical inactivation processes: combined preservation opportunities using heat, ultrasound and pressure. Int J Food Microbiol 28:197–219

    Article  CAS  PubMed  Google Scholar 

  • Eriksson S, Andréasson E, Ekbom B, Granér G, Pontoppidan B, Taipalensuu J et al (2002) Complex formation of myrosinase isoenzymes in oilseed rape seeds are dependent on the presence of myrosinase-binding proteins. Plant Physiol 129:1592–1599

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ghawi SK, Methven L, Rastall RA, Niranjan K (2012) Thermal and high hydrostatic pressure inactivation of myrosinase from green cabbage: a kinetic study. Food Chem 131(4):1240–1247

    Article  CAS  Google Scholar 

  • Grubb CD, Abel S (2006) Glucosinolate metabolism and its control. Trends Plant Sci 11(2):89–100

    Article  CAS  PubMed  Google Scholar 

  • Guo RF, Yuan GF, Wang QM (2013) Effect of NaCl treatments on glucosinolate metabolism in broccoli sprouts. J Zhejiang Univ Sci B (Biomed & Biotechnol) 14(2):124–131

    Article  CAS  Google Scholar 

  • Higdon JV, Delage B, Williams DE, Dashwood RH (2007) Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacol Res 55(3):224–236

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Holst B, Williamson G (2004) A critical review of the bioavailability ofmglucosinolates and related compounds. Nat Prod Rep 21:425–447

    Article  CAS  PubMed  Google Scholar 

  • Jost R, Altschmied L, Bloem E, Bogs J, Gershenzon J, Hähnel U et al (2005) Expression profiling of metabolic genes in response to methyl jasmonate reveals regulation of genes of primary and secondary sulfur-related pathways in Arabidopsis thaliana. Photosynth Res 86:491–508

    Article  CAS  PubMed  Google Scholar 

  • Kissen R, Rossiter JT, Bones AM (2009) The ‘mustard oil bomb’: not so easy to assemble? Localization, expression and distribution of the components of the myrosinase enzyme system. Phytochem Rev 8:69–86

    Article  CAS  Google Scholar 

  • Kusnierczyk A, Winge P, Midelfart H, Armbruster WS, Rossiter JT, Bones AM (2007) Transcriptional responses of Arabidopsis thaliana ecotypes with different glucosinolate profiles after attack by polyphagous Myzus persicae and oligophagous Brevicoryne brassicae. J Exp Bot 58:2537–2552

    Article  CAS  PubMed  Google Scholar 

  • Lim S, Lee EJ, Kim J (2015) Decreased sulforaphene concentration and reduced myrosinase activity of radish (Raphanus sativus L.) root during cold storage. Postharvest Biol Technol 100:219–225

    Article  CAS  Google Scholar 

  • Ludikhuyze L, Ooms V, Weemaes C, Hendrickx M (1999) Kinetic study of the irreversible thermal and pressure inactivation of myrosinase from broccoli (Brassica oleracea L. cv. italica). J Agric Food Chem 47:1794–1800

    Article  CAS  PubMed  Google Scholar 

  • Ludikhuyze L, Rodrigo L, Hendrickx M (2000) The activity of myrosinase from broccoli (Brassica oleracea L. cv. italica): influence of intrinsic and extrinsic factors. J Food Prot 63:400–403

    CAS  PubMed  Google Scholar 

  • Martínez-Ballesta MC, Moreno DA, Carvajal M (2013) The physiological importance of glucosinolates on plant response to abiotic stress in Brassica. Int J Mol Sci 14:11607–11625

    Article  Google Scholar 

  • Matusheski NV, Juvik JA, Jeffery EH (2004) Heating decreases epithiospecifier protein activity and increases sulforaphane formation in broccoli. Phytochemistry 65(9):1273–1281

    Article  CAS  PubMed  Google Scholar 

  • Michalska K, Tan K, Li H, Hatzos-Skintges C, Bearden J, Babnigg G, Joachimiak A (2013) GH1-family 6-P-β-glucosidases from human microbiome lactic acid bacteria. Acta Crystallogr D Biol Crystallogr 69(3):451–463

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moreno DA, Carvajal M, Lopez-Berenguer C, Garcia-Viguera C (2006) Chemical and biological characterisation of nutraceutical compounds of broccoli. J Pharm Biomed Anal 41:1508–1522

    Article  CAS  PubMed  Google Scholar 

  • Mullaney JA, Kelly WJ, McGhie TK, Ansell J, Heyes JA (2013) Lactic acid bacteria convert glucosinolates to nitriles efficiently yet differently from Enterobacteriaceae. J Agric Food Chem 61:3039–3046

    Article  CAS  PubMed  Google Scholar 

  • Ohtsuru M, Kawatani H (1979) Studies of the myrosinase from Wasabi japonica: purification and some properties of wasabi myrosinase. Agric Biol Chem 43(11):2249–2255

    Article  CAS  Google Scholar 

  • Okunade OA, Ghawi SK, Methven L, Niranjan K (2015) Thermal and pressure stability of myrosinase enzymes from black mustard (Brassica nigra L. W.D.J. Koch. var. nigra), brown mustard (Brassica juncea L. Czern. var. juncea) and yellow mustard (Sinapsis alba L. subsp. maire) seeds. Food Chem 187:485–490

    Article  CAS  PubMed  Google Scholar 

  • Oliviero T, Verkerk R, Van Boekel MAJS, Dekker M (2014) Effect of water content and temperature on inactivation kinetics of myrosinase in broccoli (Brassica oleracea var. italica). Food Chem 163:197–201

    Article  CAS  PubMed  Google Scholar 

  • Pang Q, Guo J, Chen S, Chen Y, Zhang L, Fei M et al (2012) Effect of salt treatment on the glucosinolate-myrosinase system in Thellungiella salsuginea. Plant Soil 355:363–374

    Article  CAS  Google Scholar 

  • Rask L, Andréasson E, Ekbom B, Eriksson S, Pontoppidan B, Meijer J (2000) Myrosinase: gene family evolution and herbivore defense in Brassicaceae. Plant Mol Biol 42:93–113

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Hernández MC, Moreno DA, Carvajal M, Martínez-Ballesta MC (2014) genotype influences sulfur metabolism in broccoli (Brassica oleracea L.) under elevated CO2 and NaCl stress. Plant Cell Physiol 55(12):2047–2059

    Article  Google Scholar 

  • Shapiro TA, Fahey JW, Wade KL, Stephenson KK, Talalay P (2001) Chemoprotective glucosinolates and isothiocyanates of broccoli sprouts: metabolism and excretion in humans. Can Epidemiol Biomark Prev 10:501–508

    CAS  Google Scholar 

  • Springett MB, Adams JB (1989) Properties of Brussels-sprouts thioglucosidase. Food Chem 33:173–186

    Article  CAS  Google Scholar 

  • Stoin D, Pirsan P, Radu F, Poiana MA, Alexa E, Dogaru D (2009) Studies regarding the myrosinase enzymatic activity from black mustard (Brassica nigra) seeds. J Food Agric Environ 7:44–47

    CAS  Google Scholar 

  • Taipalensuu J, Eriksson S, Rask L (1997) The myrosinase-binding protein from Brassica napus seeds possesses lectin activity and has a highly similar vegetatively expressed wound-inducible counterpart. Eur J Biochem 250:680–688

    Article  CAS  PubMed  Google Scholar 

  • Takeda M, Sugimori N, Torizawa T, Terauchi T, Ono AM, Yagi H et al (2008) Structure of the putative 32 kDa myrosinase-binding protein from Arabidopsis (At3g16450.1) determined by SAIL-NMR. FEBS J 275:5873–5884

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thangstad OP, Gilde B, Chadchawan S, Seem M, Husebye H, Bradley D, Bones AM (2004) Cell specific, cross-species expression of myrosinases in Brassica napus, Arabidopsis thaliana and Nicotiana tabacum. Plant Mol Biol 54:597–611

    Article  CAS  PubMed  Google Scholar 

  • Traka M, Mithen R (2009) Glucosinolates, isothiocyanates and human health. Phytochem Rev 8:269–282

    Article  CAS  Google Scholar 

  • Van Eylen D, Indrawati M, Hendrickx A, Van Loey A (2006) Temperature and pressure stability of mustard seed (Sinapis alba L.) myrosinase. Food Chem 97(2):263–271

    Article  Google Scholar 

  • Van Eylen D, Oey I, Hendrickx M, Van Loey A (2007) Kinetics of the stability of broccoli (Brassica oleracea cv. italica) myrosinase and isothiocyanates in broccoli juice during pressure/temperature treatments. J Agri Food Chem 55(6):2163–2170

    Article  Google Scholar 

  • Van Eylen D, Oey I, Hendrickx M, Van Loey A (2008) Behavior of mustard seed (Sinapis alba L.) myrosinase during temperature/pressure treatments: a case study on enzyme activity and stability. Eur Food Res Technol 226(3):545–553

    Article  Google Scholar 

  • Vaughn SF, Isbell TA, Weisleder D, Berhow MA (2005) Biofumigant compounds released by field pennycress (Thlaspi arvense) seedmeal. J Chem Ecol 31:167–177

    Article  CAS  PubMed  Google Scholar 

  • West LG, Badenhop AF, McLaughlin JL (1977) Allyl isothiocyanate and allyl cyanide production in cell-free cabbage leaf extracts, shredded cabbage, and cole slaw. J Agric Food Chem 25:1234–1238

    Article  CAS  PubMed  Google Scholar 

  • Winde I, Wittstock U (2011) Insect herbivore counteradaptations to the plant glucosinolate–myrosinase system. Phytochemistry 72:1566–1575

    Article  CAS  PubMed  Google Scholar 

  • Yan P, Yuan-yuan X, Xian-wen Z, Zhe L, Yi-qin G, Liang X et al (2014) Molecular characterization and expression profiles of myrosinase gene (RsMyr2) in radish (Raphanus sativus L.). J Integr Agric 13(9):1877–1888

    Article  Google Scholar 

  • Yen GC, Wei QK (1993) Myrosinase activity and total glucosinolate content of cruciferous vegetables, and some properties of cabbage myrosinase in Taiwan. J Sci Food Agric 61:471–475

    Article  CAS  Google Scholar 

  • Zhao Z, Zhang W, Stanley BA, Assmann SM (2008) Functional proteomics of Arabidopsis thaliana guard cells uncovers new stomatal signaling pathways. Plant Cell 20:3210–3226

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the Spanish Ministerio de Economía y Competitividad [CICYT (AGL2012-40175-C02-01)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Micaela Carvajal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinez-Ballesta, M.d.C., Carvajal, M. Myrosinase in Brassicaceae: the most important issue for glucosinolate turnover and food quality. Phytochem Rev 14, 1045–1051 (2015). https://doi.org/10.1007/s11101-015-9430-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-015-9430-4

Keywords

Navigation