Skip to main content
Log in

Carotenoids in cereals: an ancient resource with present and future applications

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Cereals are considered to be a major source of carbohydrates and proteins as well as minor micronutrients such as minerals, vitamins and antioxidants, including carotenoids. Carotenoids are natural lipophilic pigments biosynthesized mainly by plants, and certain bacteria and fungi. Cereals, although having a low carotenoid content when compared with the majority of fruits and vegetables, may have an important impact in the nutritional status of consumers. The daily consumption of cereals, and products derived from them, by a large part of the population, especially in under-developed and developing countries, makes cereals a contributor of carotenoids which should not be overlooked and must be taken into consideration in biofortification strategies. In the present manuscript, we revise the existing information about the composition and distribution of carotenoids in cereals, highlighting factors which alter their profile, such as domestication of wild varieties, genotype, storage, milling and processing techniques. Strategies for stimulating the carotenoid content in cereals, either by means of traditional breeding methods or by genetic manipulation, are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AMD:

Age-related macular degeneration

MAS:

Marker assisted selection

PSY:

Phytoene synthase gene

QTL:

Quantitative trait locus

ROS:

Reactive oxygen species

XAT:

Xanthophyll acyltransferase

YPC:

Yellow pigment content

References

  • Abdel-Aal EM, Young JC, Rabalski I et al (2007) Identification and quantification of seed carotenoids in selected wheat species. J Cereal Sci 55:787–794

    CAS  Google Scholar 

  • Abdul-Hamid A, Sulaiman RRR, Osman A et al (2007) Preliminary study of the chemical composition of rice milling fractions stabilized by microwave heating. J Food Comp Anal 20:627–637

    Article  CAS  Google Scholar 

  • Adom KK, Sorrells ME, Liu RH (2003) Phytochemical profiles and antioxidant activity of wheat varieties. J Agric Food Chem 51:7825–7834

    Article  PubMed  CAS  Google Scholar 

  • Adom KK, Sorrells ME, Liu RH (2005) Phytochemicals and antioxidant activity of milled fractions of different wheat varieties. J Agric Food Chem 53:2297–2306

    Article  PubMed  CAS  Google Scholar 

  • Agrasys. http://www.agrasys.es/es/index.html. Accessed Dec 2014

  • Ahmad FT, Asenstorfer RE, Soriano IR et al (2013) Effect of temperature on lutein esterification and lutein stability in wheat grain. J Cereal Sci 58:408–413

    Article  CAS  Google Scholar 

  • Ahmad FT, Mather DE, Law H-Y et al (2015) Genetic control of lutein esterification in wheat (Triticum aestivum L.) grain. J Cereal Sci 64:109–115

  • Ahmed SS, Lott MN, Marcus DM (2005) The macular xanthophylls. Surv Ophthalmol 50:183–193

    Article  PubMed  Google Scholar 

  • Aluru M, Xu Y, Guo R et al (2008) Generation of transgenic maize with enhanced provitamin A content. J Exp Bot 59:3551–3562

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Álvarez JB, Ballesteros J, Arriaga HO et al (1995) Rheological properties and baking performances of flours from hexaploid tritordeums. J Cereal Sci 23:291–299

    Article  Google Scholar 

  • Álvarez JB, Martín LM, Martín A (1998) Chromosomal localization of genes for carotenoid pigments using addition lines of Hordeum chilense in wheat. Plant Breed 117:287–289

    Article  Google Scholar 

  • Álvarez JB, Martín LM, Martín A (1999) Genetic variation for carotenoid pigment content in the amphiploid Hordeum chilense × Triticum turgidum conv. durum. Plant Breed 118:187–189

    Article  Google Scholar 

  • Alves-Rodrigues A, Shao A (2004) The science behind lutein. Toxicol Lett 150:57–83

    Article  PubMed  CAS  Google Scholar 

  • Andersen ML, Erichsen HR, Skibsted LH et al (2011) Heat induced formation of free radicals in wheat flour. J Cereal Sci 54:494–498

    Article  CAS  Google Scholar 

  • Arya SS, Parihar DB (1981) Effect of moisture and temperature on storage changes in lipids and carotenoids of atta (wheat flour). Food Nahr 25:121–126

    Article  CAS  Google Scholar 

  • Atienza SG, Ramírez CM, Hernández P et al (2004) Chromosomal location of genes for carotenoid pigments in Hordeum chilense. Plant Breed 123:303–304

    Article  CAS  Google Scholar 

  • Atienza SG, Avila CM, Ramírez MC et al (2005) Application of near infrared reflectance spectroscopy to the determination of carotenoid content in tritordeum for breeding purposes. Aust J Agric Res 56:85–89

    Article  CAS  Google Scholar 

  • Atienza S, Ballesteros J, Martín A et al (2007a) Genetic variability of carotenoid concentration and degree of esterification among tritordeum (×Tritordeum Ascherson et Graebner) and durum wheat accessions. J Agric Food Chem 55:4244–4251

    Article  PubMed  CAS  Google Scholar 

  • Atienza SG, Martín AC, Ramírez MC et al (2007b) Effects of Hordeum chilense cytoplasm on agronomic traits in common wheat. Plant Breed 126:5–8

    Article  CAS  Google Scholar 

  • Atienza SG, Martín A, Pecchioni N et al (2008) The nuclear-cytoplasmic interaction controls carotenoid content in wheat. Euphytica 159:325–331

    Article  CAS  Google Scholar 

  • Bai C, Twyman RM, Farré G et al (2011) A golden era-pro-vitamin A enhancement in diverse crops. In Vitro Cell Dev Biol Plant 47:205–221

    Article  CAS  Google Scholar 

  • Baker R, Günter C (2004) The role of carotenoids in consumer choice and the likely benefits from their inclusion into products for human consumption. Trends Food Sci Technol 15:484–488

    Article  CAS  Google Scholar 

  • Ballesteros JB, Ramírez MC, Martínez C et al (2005) Registration of HT621, a high carotenoid content tritordeum germplasm line. Crop Sci 45:2662–2663

    Article  Google Scholar 

  • Bechoff A, Dhuique-Mayer C, Dornier M et al (2010) Relationship between the kinetics of β-carotene degradation and formation of norisoprenoids in the storage of dried sweet potato chips. Food Chem 121:348–357

    Article  CAS  Google Scholar 

  • Belefant-Miller H, Grace SC (2010) Variations in bran carotenoid levels within and between rice subgroups. Plant Food Hum Nutr 65:358–363

    Article  CAS  Google Scholar 

  • Berardo N, Brenna OV, Amato A et al (2004) Carotenoids concentration among maize genotypes measured by near infrared reflectance spectroscopy (NIRS). Innov Food Sci Emerg Technol 5:393–398

    Article  CAS  Google Scholar 

  • Berardo N, Manzzinelli G, Valoti P et al (2009) Characterization of maize germplasm for the chemical composition of the grain. J Agric Food Chem 57:2378–2384

    Article  PubMed  CAS  Google Scholar 

  • Beyer P (2010) Golden Rice and ‘Golden’ crops for human nutrition. New Biotechnol 27:478–481

    Article  CAS  Google Scholar 

  • Blanco A, Colasuonno P, Gadaleta A et al (2011) Quantitative trait loci for yellow pigment concentration and individual carotenoid compounds in durum wheat. J Cereal Sci 54:255–264

    Article  CAS  Google Scholar 

  • Blessin CW, VanEtten H, Wiebe R (1958) Carotenoid content of the grain from yellow endosperm-type sorghums. Cereal Chem 35:359–365

    CAS  Google Scholar 

  • Blessin CW, Brecher JD, Dimler RJ (1963) Carotenoids of corn and sorghum: V. Distribution of xanthophylls and carotenes in hand-dissected and dry-milled fractions of yellow dent corn. Cereal Chem 40:582–590

    CAS  Google Scholar 

  • Borrelli GM, De Leonardis AM, Fares C et al (2003) Effects of modified processing conditions on oxidative properties of semolina dough and pasta. Cereal Chem 80:225–231

    Article  CAS  Google Scholar 

  • Borrelli GM, De Leonardis AM, Platani C et al (2008) Distribution along durum wheat kernel of the components involved in semolina colour. J Cereal Sci 48:494–502

    Article  CAS  Google Scholar 

  • Britton G, Hornero-Méndez D (1997) Carotenoids and colour in fruit and vegetables. In: Tomás-Barberán FA, Robins RJ (eds) Phytochemistry of fruit and vegetables, Ch. 2. Clarendon Press, Oxford, pp 11–27

  • Britton G, Khachik F (2009) Carotenoids in food. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids, vol 5: nutrition and health. Birkhäuser Verlag, Basel, pp 45–66

  • Britton G, Liaaen-Jensen S, Pfander H (2009) Carotenoids, vol 5: nutrition and health. Birkhäuser Verlag, Basel

    Book  Google Scholar 

  • Burkhardt PK, Beyer P, Wünn J et al (1997) Transgenic rice (Oryza sativa) endosperm expressing daffodil (Narcissus pseudonarcissus) phytoene synthase accumulates phytoene, a key intermediate of provitamin A biosynthesis. Plant J 11:1071–1078

    Article  PubMed  CAS  Google Scholar 

  • Burt A, Grainger C, Young J et al (2010) Impact of postharvest handling on carotenoid concentration and composition in high-carotenoid maize (Zea mays L.) kernels. J Agric Food Chem 58:8286–8292

    Article  PubMed  CAS  Google Scholar 

  • Calucci L, Capocchi A, Galleschi L et al (2004) Antioxidants, free radicals, storage proteins, puroindolines, and proteolytic activities in bread wheat (Triticum aestivum) seeds during accelerated aging. J Agric Food Chem 52:4274–4281

    Article  PubMed  CAS  Google Scholar 

  • Calvo MM (2005) Lutein: a valuable ingredient of fruit and vegetables. Crit Rev Food Sci 45:1–26

    Article  CAS  Google Scholar 

  • Carbonell JV, Piñaga F, Yusá V et al (1986) The dehydration of paprika with ambient and heated air and the kinetics of colour degradation during storage. J Food Eng 5:179–193

    Article  Google Scholar 

  • Chander S, Guo YQ, Yang XH et al (2008) Using molecular markers to identify two major loci controlling carotenoid contents in maize grain. Theor Appl Genet 116:223–233

    Article  PubMed  CAS  Google Scholar 

  • Cheftel JC (1986) Nutritional effects of extrusion-cooking. Food Chem 20:263–283

    Article  CAS  Google Scholar 

  • Chelowski J (ed) (1994) Cereal grain. Mycotoxins, fungi and quality in drying and storage. Developments in food science. Elsevier, Amsterdam

  • Choi Y, Jeong H, Lee J (2007) Antioxidant activity of methanolic extracts from some grains consumed in Korea. Food Chem 103:130–138

    Article  CAS  Google Scholar 

  • Clarke FR, Clarke JM, McCaig TN et al (2006) Inheritance of yellow pigment concentration in seven durum wheat crosses. Can J Plant Sci 86:133–141

    Article  Google Scholar 

  • Cong L, Wang C, Chen L et al (2009) Expression of phytoene synthase 1 and carotene desaturase crtl genes result in an increase in the total carotenoids content in transgenic elite wheat (Triticum aestivum L.). J Agric Food Chem 57:8652–8660

    Article  PubMed  CAS  Google Scholar 

  • Cristobal JAR (1965) Variation of the content of carotenes in cereals in relation to the time of storage. An Inst Invest Vet 15:85–92

    Google Scholar 

  • Datta K, Rai M, Parkhi V et al (2006) Improved “Golden” rice and post-transgeneration enhancement of metabolic target products of carotenoids (β-carotene) in transgenic elite cultivars (IR64 and BR29). Curr Sci 91:935–939

    CAS  Google Scholar 

  • Datta SK, Datta K, Parkhi V et al (2007) Golden rice: introgression, breeding, and field evaluation. Euphytica 154:271–278

    Article  Google Scholar 

  • De Oliveira G, Rodriguez-Amaya D (2007) Processed and prepared corn products as sources of lutein and zeaxanthin: compositional variation in the food chain. J Food Sci 72:S79–S85

    Article  CAS  Google Scholar 

  • Dhuique-Mayer C, Tbatou M, Carail M et al (2007) Thermal degradation of antioxidant micronutrients in citrus juice: kinetics and newly formed compounds. J Agric Food Chem 55:4209–4216

    Article  PubMed  CAS  Google Scholar 

  • Di Silvestro R, Marotti LL, Bosi S et al (2012) Health-promoting phytochemicals of Italian common wheat varieties grown under low-input agricultural management. J Sci Food Agric 92:2800–2810

    Article  PubMed  CAS  Google Scholar 

  • Digesù AM, Platani C, Cattivelli L et al (2009) Genetic variability in yellow pigment components in cultivated and wild tetraploid wheats. J Cereal Sci 50:210–218

    Article  CAS  Google Scholar 

  • Doblado-Maldonado AF, Pike OA, Sweley JC et al (2012) Key issues and challenges in whole wheat flour milling and storage. J Cereal Sci 56:119–126

    Article  Google Scholar 

  • Egesel CO, Wong JC, Lambert RJ et al (2003) Combining ability of maize inbreds for carotenoids and tocopherols. Crop Sci 43:818–823

    Article  CAS  Google Scholar 

  • El-Agamey A, McGarvey DJ (2008) Carotenoid radicals and radical ions. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids, vol 4: natural functions. Birkhäuser Verlag, Basel, pp 119–154

  • Eversole K, Feuillet C, Mayer KFX et al (2014) Slicing the wheat genome. Science 18:285–287

    Article  Google Scholar 

  • Fardet A (2010) New hypotheses for the health-protective mechanisms of whole-grain cereals: what is beyond fibre? Nutr Res Rev 23:65–134

    Article  PubMed  CAS  Google Scholar 

  • Fardet A, Rock E, Rémésy C (2008) Is the in vitro antioxidant potential of whole-grain cereals and cereal products well reflected in vivo? J Cereal Sci 48:258–276

    Article  CAS  Google Scholar 

  • Fares C, Codianni P, Nigro F et al (2008) Processing and cooking effects on chemical, nutritional and functional properties of pasta obtained from selected emmer genotypes. J Sci Food Agric 88:2435–2444

    Article  CAS  Google Scholar 

  • Farrington FF, Warwick MJ, Shearer G (1981) Changes in the carotenoids and sterol fractions during the prolonged storage of wheat flour. J Sci Food Agric 32:948–950

    Article  CAS  Google Scholar 

  • Fernandez-Orozco R, Gallardo-Guerrero L, Hornero-Méndez D (2013) Carotenoid profiling in tubers of different potato (Solanum sp) cultivars: accumulation of carotenoids mediated by xanthophyll esterification. Food Chem 141:2864–2872

    Article  PubMed  CAS  Google Scholar 

  • Fish WW, Davis AR (2003) The effects of frozen storage conditions on lycopene stability in watermelon tissue. J Agric Food Chem 51:3582–3585

    Article  PubMed  CAS  Google Scholar 

  • Fratianni A, Irano M, Panfili G et al (2005) Estimation of color of durum wheat. Comparison of WSB, HPLC, and reflectance colorimeter measurements. J Agric Food Chem 53:2373–2378

    Article  PubMed  CAS  Google Scholar 

  • Fratianni A, Di Criscio T, Mignogna R et al (2012) Carotenoids, tocols and retinols evolution during egg pasta-making processes. Food Chem 131:590–595

    Article  CAS  Google Scholar 

  • Frei M, Becker K (2005) Fatty acids and all-trans-β-carotene are correlated in differently colored rice landraces. J Sci Food Agric 85:2380–2384

    Article  CAS  Google Scholar 

  • Fu BX, Schlichting L, Pozniak CJ et al (2013) Pigment loss from semolina to dough: rapid measurement and relationship with pasta colour. J Cereal Sci 57:560–566

    Article  Google Scholar 

  • Goupy P, Hugues M, Boivin P, Amiot MJ (1999) Antioxidant composition and activity of barley (Hordeum vulgare) and malt extracts and of isolated phenolic compounds. J Sci Food Agric 79:1625–1634

    Article  CAS  Google Scholar 

  • Graham RD, Rosser JM (2000) Carotenoids in staple foods: their potential to improve human nutrition. Food Nutr Bull 21:404–409

    Article  Google Scholar 

  • Grand Challenges in Global Health. www.grandchallenges.org/ImproveNutrition/Challenges/NutrientRichPlants/Pages/Sorghum.aspx. Accessed May 2015

  • Guzman-Tello R, Cheftel JC (1990) Colour loss during extrusion cooking of β-carotene-wheat flour mixes as an indicator of the intensity of thermal and oxidative processing. Int J Food Sci Technol 25:420–434

    Article  Google Scholar 

  • Harvestplus. Breeding crops for better nutrition. http://www.harvestplus.org/. Accessed May 2015

  • Hemery Y, Rouau X, Lullien-Pellerin V et al (2007) Dry processes to develop wheat fractions and products with enhanced nutritional quality. J Cereal Sci 46:327–347

    Article  CAS  Google Scholar 

  • Hentschel V, Kranl K, Hollmann J et al (2002) Spectrophotometric determination of yellow pigment content and evaluation of carotenoids by high-performance liquid chromatography in durum wheat grain. J Agric Food Chem 50:6663–6668

    Article  PubMed  CAS  Google Scholar 

  • Hernández P, Dorado G, Prieto P et al (2001) A core genetic map of Hordeum chilense and comparisons with maps of barley (Hordeum vulgare) and wheat (Triticum aestivum). Theor Appl Genet 102:1259–1264

    Article  Google Scholar 

  • Hidalgo A, Brandolini A (2008a) Protein, ash, lutein and tocols distribution in einkorn (Triticum monococcum L. ssp. monococcum) seed fractions. Food Chem 107:444–448

    Article  CAS  Google Scholar 

  • Hidalgo A, Brandolini A (2008b) Kinetics of carotenoids degradation during the storage of einkorn (Triticum monococcum L. ssp. monococcum) and bread wheat (Triticum aestivum L. ssp. aestivum) flours. J Agric Food Chem 56:11300–11305

    Article  PubMed  CAS  Google Scholar 

  • Hidalgo A, Brandolini A, Pompei C et al (2006) Carotenoids and tocols of einkorn wheat (Triticum monococcum ssp. monococcum L.). J Cereal Sci 44:182–193

    Article  CAS  Google Scholar 

  • Hidalgo A, Brandolini A, Ratti S (2009) Influence of genetic and environmental factors on selected nutritional traits of Triticum monococcum. J Agric Food Chem 57:6342–6348

    Article  PubMed  CAS  Google Scholar 

  • Hidalgo A, Brandolini A, Pompei C (2010) Carotenoids evolution during pasta, bread and water biscuit preparation from wheat flours. Food Chem 121:746–751

    Article  CAS  Google Scholar 

  • Howitt CA, Pogson BJ (2006) Carotenoid accumulation and function in seeds and non-green tissues. Plant, Cell Environ 29:435–445

    Article  CAS  Google Scholar 

  • Howitt CA, Cavanagh CR, Bowerman AF et al (2009) Alternative splicing, activation of cryptic exons and amino acid substitutions in carotenoid biosynthetic genes are associated with lutein accumulation in wheat endosperm. Funct Integr Genomics 9:363–376

    Article  PubMed  CAS  Google Scholar 

  • Humphries JM, Graham RD, Mares DJ (2004) Application of reflectance colour measurement to the estimation of carotene and lutein content in wheat and triticale. J Cereal Sci 40:151–159

    Article  CAS  Google Scholar 

  • Ibrahim K, Juvik J (2009) Feasibility for improving phytonutrient content in vegetable crops using conventional breeding strategies: case study with carotenoids and tocopherols in sweet corn and broccoli. J Agric Food Chem 57:4636–4644

    Article  PubMed  CAS  Google Scholar 

  • ICC (International Association for Cereal Science and Technology) (1990) Method 152. Determination of the yellow pigment content of durum wheat semolina and flour. In: Standard methods of the International Association for Cereal Science and Technology. Verlag Moritz Schäfer, Detmold

  • Jood S, Kapoor AC (1994) Vitamin contents of cereal grains as affected by storage and insect infestation. Plant Food Hum Nutr 46:237–243

    Article  CAS  Google Scholar 

  • Juliano BO (ed) (1994) Rice: chemistry and technology, 2nd ed. EUA, St. Paul, pp 17–160 and 647–680

  • Kahlon TS, Chow FI, Hoefer JL et al (1986) Bioavailability of vitamins A and E as influenced by wheat bran and bran particle size. Cereal Chem 63:490–493

    CAS  Google Scholar 

  • Kalt W (2005) Effects of production and processing factors on major fruit and vegetable antioxidants. J Food Sci 70:R11–R19

    Article  CAS  Google Scholar 

  • Kandlakunta B, Rajendran A, Thingnganing L (2008) Carotene content of some common (cereals, pulses, vegetables, spices and condiments) and unconventional sources of plant origin. Food Chem 106:85–89

    Article  CAS  Google Scholar 

  • Kaneko S, Oyanagi A (1995) Varietal differences in the rate of esterification of endosperm lutein during the storage of wheat seeds. Biosci Biotechnol Biochem 59:2312–2313

    Article  CAS  Google Scholar 

  • Kaneko S, Nagamine T, Yamada T (1995) Esterification of endosperm lutein with fatty acids during the storage of wheat seeds. Biosci Biotechnol Biochem 59:1–4

    Article  CAS  Google Scholar 

  • Kean EG, Ejeta G, Hamaker BR et al (2007) Characterization of carotenoid pigments in mature and developing kernels of selected yellow-endosperm sorghum varieties. J Agric Food Chem 55:2619–2626

    Article  PubMed  CAS  Google Scholar 

  • Kean EG, Hamaker BR, Ferruzzi MG (2008) Carotenoid bioaccessibility from whole grain and degermed maize meal products. J Agric Food Chem 56:9918–9926

    Article  PubMed  CAS  Google Scholar 

  • Kean EG, Bordenave N, Ejeta G et al (2011) Carotenoid bioaccesibility from whole grain and decorticated yellow endosperm sorghum porridge. J Cereal Sci 54:450–459

    Article  CAS  Google Scholar 

  • Kim JK, Lee SY, Chu SM et al (2010) Variation and correlation analysis of flavonoids and carotenoids in Korean pigmented rice (Oryza sativa L.) cultivars. J Agric Food Chem 58:12804–12809

    Article  PubMed  CAS  Google Scholar 

  • Koca N, Burdurlu HS, Karadeniz F (2007) Kinetics of color changes in dehydrated carrots. J Food Eng 78:449–455

    Article  CAS  Google Scholar 

  • Konopka I, Kozirok W, Rotkiewicz D (2004) Lipids and carotenoids of wheat grain and flour and attempt of correlating them with digital image analysis of kernel surface and cross-sections. Food Res Int 37:429–438

    Article  CAS  Google Scholar 

  • Kurilich AC, Juvik JA (1999) Quantification of carotenoid and tocopherol antioxidants in Zea mays. J Agric Food Chem 47:1948–1955

    Article  PubMed  CAS  Google Scholar 

  • Lamberts L, Delcour JA (2008) Carotenoids in raw and parboiled brown and milled rice. J Agric Food Chem 56:11914–11919

    Article  PubMed  CAS  Google Scholar 

  • Landrum JT, Bone RA (2001) Lutein, zeaxanthin, and the macular pigment. Arch Biochem Biophys 385:28–40

    Article  PubMed  CAS  Google Scholar 

  • Lavelli V, Hidalgo A, Pompei C et al (2009) Radical scavenging activity of einkorn (Triticum monococcum L. subsp. monococcum) wholemeal flour and its relationship to soluble phenolic and lipophilic antioxidant content. J Cereal Sci 49:319–321

    Article  CAS  Google Scholar 

  • Leenhardt F, Lyan B, Rock E et al (2006a) Genetic variability of carotenoid concentration, and lipoxygenase and peroxidase activities among cultivated wheat species and bread wheat varieties. Eur J Agron 25:170–176

    Article  CAS  Google Scholar 

  • Leenhardt F, Lyan B, Rock E et al (2006b) Wheat lipoxygenase activity induces greater loss of carotenoids than vitamin E during breadmaking. J Agric Food Chem 54:1710–1715

    Article  PubMed  CAS  Google Scholar 

  • Lemmens L, De Vleeschouwer K, Moelants KRN et al (2010) β-Carotene isomerization kinetics during thermal treatments of carrot puree. J Agric Food Chem 58:6816–6824

    Article  PubMed  CAS  Google Scholar 

  • Li W, Beta T (2012) An evaluation of carotenoid levels and composition of glabrous canaryseed. Food Chem 133:782–786

    Article  CAS  Google Scholar 

  • Liaaen-Jensen S, Lutnaes BF (2008) E/Z isomers and isomerization. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids, vol 4: natural functions. Birkhäuser Velag, Basel, pp 15–36

  • Lier JB, Lacroix LJ (1974) Carotenoids of durum wheat: induced high pigment levels obtained by treatment of the growing plant with chlorophenylthiotriethylamine (CPTA) hydrochloride. Cereal Chem 51:188–194

    CAS  Google Scholar 

  • Lindley MG (1998) The impact of food processing on antioxidants in vegetable oils, fruits and vegetables. Trends Food Sci Tech 9:336–340

    Article  CAS  Google Scholar 

  • Liu RH (2007) Whole grain phytochemicals and health. J Cereal Sci 46:207–219

    Article  CAS  Google Scholar 

  • Luterotti S, Kljak K (2010) Spectrophotometric estimation of total carotenoids in cereal grain products. Acta Chim Slov 57:781–787

    PubMed  CAS  Google Scholar 

  • Lv J, Lu Y, Niu Y et al (2013) Effect of genotype, environment, and their interaction on phytochemical compositions and antioxidant properties of soft winter wheat flour. Food Chem 138:454–462

    Article  PubMed  CAS  Google Scholar 

  • Mace ES, Jordan DR (2011) Integrating sorghum whole genome sequence information with a compendium of sorghum QTL studies reveals uneven distribution of QTL and of gene-rich regions with significant implications for a crop improvement. Theor Appl Genet 123:169–191

    Article  PubMed  CAS  Google Scholar 

  • Maiani G, Periago-Castón MJ, Catasta G et al (2009) Carotenoids: actual knowledge on food sources, intakes, stability and bioavailability and their protective role in humans. Mol Nutr Food Res 53:S194–S218

    Article  PubMed  Google Scholar 

  • Mamatha B, Sangeetha R, Baskaran V (2011) Provitamin-A and xanthophyll carotenoids in vegetables and food grains of nutritional and medicinal importance. Int J Food Sci Tech 46:315–323

    Article  CAS  Google Scholar 

  • Martín A, Chapman V (1977) A hybrid between Hordeum chilense and Triticum aestivum. Cereal Res Commun 5:365–368

    Google Scholar 

  • Martín A, Sanchez-Monge Laguna E (1982) Citology and morphology of the amphiploid Hordeum chilense × Triticum turgidum conv. durum. Euphytica 31:261–267

    Article  Google Scholar 

  • Martín A, Álvarez JA, Martín LM et al (1999) The development of tritordeum: a novel cereal for food processing. J Cereal Sci 30:85–95

    Article  Google Scholar 

  • Marzábal P, Busk PK, Ludevid MD et al (1998) The bifactorial endosperm box of γ-zein gene: characterisation and function of the Pb3 and GZM cis-acting elements. Plant J 16:41–52

    Article  PubMed  Google Scholar 

  • Mattera G, Cabrera A, Hornero-Méndez D et al (2015) Lutein esterification in wheat endosperm is controlled by the homoeologous group 7, and is increased by the simultaneous presence of chromosomes 7D and 7Hch from Hordeum chilense. Crop Pasture Sci. doi:10.1071/CP15091

  • McKevith B (2004) Nutricional aspects of cereals. Nutr Bull 29:111–142

    Article  Google Scholar 

  • Mellado-Ortega E (2013) Biosynthesis, accumulation and stability of carotenoids in cereals. Comparative study of durum wheat (Triticum turgidum) and tritordeum (Hordeum chilense × T. turgidum conv. durum). PhD Thesis Dissertation, University of Seville, Spain

  • Mellado-Ortega E, Hornero-Méndez D (2012) Isolation and identification of lutein esters, including their regioisomers, in tritordeum (×Tritordeum Ascherson et Graebner) grains: evidence for a preferential xanthophyll acyltransferase activity. Food Chem 135:1344–1352

    Article  PubMed  CAS  Google Scholar 

  • Mellado-Ortega E, Hornero-Méndez D (2015) Carotenoid profiling of Hordeum chilense grains: the parental proof for the origin of the high carotenoid content and esterification pattern of tritordeum. J Cereal Sci 62:15–21

    Article  CAS  Google Scholar 

  • Mellado-Ortega E, Atienza SG, Hornero-Méndez D (2015) Carotenoid evolution during postharvest storage of durum wheat (Triticum turgidum conv. durum) and tritordeum (×Tritordeum Ascherson et Graebner) grains. J Cereal Sci 62:134–142

  • Menkir A, Maziya-Dixon B (2004) Influence of genotype and environment on β-carotene content of tropical yellow-endosperm maize genotypes. Maydica 49:313–318

    Google Scholar 

  • Mínguez-Mosquera MI, Gandul-Rojas B (1994) Mechanism and kinetics of carotenoid degradation during the processing of green table olives. J Agric Food Chem 42:1551–1554

    Article  Google Scholar 

  • Mínguez-Mosquera MI, Jarén-Galán M, Gandul-Rojas B, Hornero-Méndez D, Garrido-Fernández J, Gallardo-Guerrero L (eds) (1997) Clorofilas y carotenoides en tecnología de alimentos. Servicio de Publicaciones de la Universidad de Sevilla, Sevilla

    Google Scholar 

  • Moros EE, Darnoko D, Cheryan M, Perkins EG, Jerrell J (2002) Analysis of xanthophylls in corn by HPLC. J Agric Food Chem 50:5787–5790

    Article  PubMed  CAS  Google Scholar 

  • Nakornriab M, Sriseadka T, Wongpornchai S (2008) Quantification of carotenoid and flavonoid components in brans of some Thai black rice cultivars using supercritical fluid extraction and high-performance liquid chromatography-mass spectrometry. J Food Lipids 15:488–503

    Article  CAS  Google Scholar 

  • Naqvi S, Zhu C, Farre G et al (2009) Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. Proc Natl Acad Sci USA 106:7762–7767

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ndolo VU, Beta T (2013) Distribution of carotenoids in endosperm, germ, and aleurone fractions of cereal grain kernels. Food Chem 139:663–671

    Article  PubMed  CAS  Google Scholar 

  • Nghia PT, Liem DT, Hai TV et al (2006) Effect of storage conditions on total carotenoid content in golden rice grains. Omonrice 14:18–27

    Google Scholar 

  • Nicoli MC, Anese M, Parpinel M (1999) Influence of processing on the antioxidant properties of fruit and vegetables. Trends Food Sci Technol 10:94–100

    Article  CAS  Google Scholar 

  • Nishino H (1997) Cancer prevention by natural carotenoids. J Cell Biochem 27:86–91

    Article  CAS  Google Scholar 

  • O’Kennedy MM, Grootbooma A, Shewry PR (2006) Harnessing sorghum and millet biotechnology for food and health. J Cereal Sci 44:224–235

    Article  CAS  Google Scholar 

  • Okarter N, Liu C, Sorrells M et al (2010) Phytochemical content and antioxidant activity of six diverse varieties of whole wheat. Food Chem 119:249–257

    Article  CAS  Google Scholar 

  • Olson JA (1989) Biological actions of carotenoids. J Nutr 119:94–95

    PubMed  CAS  Google Scholar 

  • Ouchi A, Aizawa K, Iwasaki Y et al (2010) Kinetic study of the quenching reaction of singlet oxygen by carotenoids and food extracts in solution. Development of a singlet oxygen absorption capacity (SOAC) assay method. J Agric Food Chem 58:9967–9978

    Article  PubMed  CAS  Google Scholar 

  • Paine JA, Shipton CA, Chaggner S et al (2005) Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat Biotechnol 23:482–487

    Article  PubMed  CAS  Google Scholar 

  • Panfili G, Fratianni A, Distaam M (2004) Improved normal-phase high-performance liquid chromatography procedure for the determination of carotenoids in cereals. J Agric Food Chem 52:6373–6377

    Article  PubMed  CAS  Google Scholar 

  • Panfili G, Fratianni A, Irano M (2005) Change in tocochromanol and carotenoid content during technological processes of cereals. Tec Molit 5:493–498

    Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R et al (2009) The sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  PubMed  CAS  Google Scholar 

  • Patil RM, Oak MD, Tamhankar SA et al (2008) Mapping and validation of a major QTL for yellow pigment content on 7AL in durum wheat (Triticum turgidum L. ssp. durum). Mol Breeding 21:485–496

    Article  Google Scholar 

  • Pinzino C, Nanni B, Zandomeneghi M (1999) Aging, free radicals, and antioxidants in wheat seeds. J Agric Food Chem 47:1333–1339

    Article  PubMed  CAS  Google Scholar 

  • Pozniak CJ, Knox RE, Clarke FR et al (2007) Identification of QTL and association of a phytoene synthase gene with endosperm colour in durum wheat. Theor Appl Genet 114:525–537

    Article  PubMed  CAS  Google Scholar 

  • Quackenbush FW (1963) Corn carotenoids: effects of temperature and moisture on losses during storage. Cereal Chem 40:266–269

    CAS  Google Scholar 

  • Quanckenbush F, Firch J, Rabourn W et al (1961) Composition of corn. Analysis of carotenoids in corn grain. J Agric Food Chem 9:132–135

    Article  Google Scholar 

  • Ravel C, Dardevet M, Leenhardt F et al (2013) Improving the yellow pigment content of bread wheat flour by selecting the three homoeologous copies of Psy1. Mol Breed 31:87–99

    Article  CAS  Google Scholar 

  • Rodriguez-Amaya DB (1997) Carotenoids and food preparation: the retention of provitamin a carotenoids in prepared, processed, and stored foods. Opportunities for Micronutrient Intervention (OMNI), Arlington, USA

  • Rodríguez-Amaya DB (2003) Food carotenoids: analysis, composition and alterations during storage and processing of foods. Forum Nutr 56:35–37

    PubMed  Google Scholar 

  • Rodríguez-Suárez C, Atienza SG (2012) Hordeum chilense genome, a useful tool to investigate the endosperm yellow pigment content in the Triticeae. BMC Plant Biol 12:200

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rodríguez-Suárez C, Giménez MJ, Ramírez MC et al (2011) Exploitation of nuclear and cytoplasm variability in Hordeum chilense for wheat breeding. Plant Genet Resour 9:313–316

    Article  Google Scholar 

  • Rodríguez-Suárez C, Giménez MJ, Gutiérrez N et al (2012) Development of wild barley (Hordeum chilense)-derived DArT markers and their use into genetic and physical mapping. Theor Appl Genet 124:713–722

    Article  PubMed  CAS  Google Scholar 

  • Salas-Fernandez MG, Hamblin MT, Li L et al (2008) Quantitative trait loci analysis of endosperm color and carotenoid content in sorghum grain. Crop Sci 48:1732–1743

    Article  Google Scholar 

  • Santra M, Rao VS, Tamhankar SA (2003) Modification of AACC procedure for measuring β-carotene in early generation durum wheat. Cereal Chem 80:130–131

    Article  CAS  Google Scholar 

  • Santra M, Santra DK, Rao VS et al (2005) Inheritance of β-carotene concentration in durum wheat (Triticum turgidum L. ssp. durum). Euphytica 144:215–221

    Article  CAS  Google Scholar 

  • Saxena A, Maity T, Raju PS et al (2012) Degradation kinetics of colour and total carotenoids in jackfruit (Artocarpus heterophyllus) bulb slices during hot air drying. Food Bioprocess Technol 5:672–679

    Article  CAS  Google Scholar 

  • Scott C, Eldridge A (2005) Comparison of carotenoid content in fresh, frozen and canned corn. J Food Comp Anal 18:551–559

    Article  CAS  Google Scholar 

  • Selim K, Tsimidou M, Biliaderis CG (2000) Kinetic studies of degradation of saffron carotenoids encapsulated in amorphous polymer matrices. Food Chem 71:199–206

    Article  CAS  Google Scholar 

  • Sellappan K, Datta K, Parkhi V et al (2009) Rice caryopsis structure in relation to distribution of micronutrients (iron, zinc, β-carotene) of rice cultivars including transgenic indica rice. Plant Sci 177:557–562

    Article  CAS  Google Scholar 

  • Selman JD (1994) Vitamin retention during blanching of vegetables. Food Chem 49:137–147

    Article  Google Scholar 

  • Serpen A, Gökmen V, Karagöz A et al (2008) Phytochemical quantification and total antioxidant capacities of Emmer (Triticum dicoccon Schrank) and Einkorn (Triticum monococcum L.) wheat landraces. J Agric Food Chem 56:7285–7292

    Article  PubMed  CAS  Google Scholar 

  • Sharma SK, Le Maguer M (1996) Kinetics of lycopene degradation in tomato pulp solids under different processing and storage conditions. Food Res Int 29:309–315

    Article  CAS  Google Scholar 

  • Siebenhandl S, Grausgruber H, Pellegrini N et al (2007) Phytochemical profile of main antioxidants in different factions of purple and blue wheat, and black barley. J Agric Food Chem 55:8541–8547

    Article  PubMed  CAS  Google Scholar 

  • Singh S, Gamlath S, Wakeling L (2007) Nutritional aspects of food extrusion: a review. Int J Food Sci Tech 42:916–929

    Article  CAS  Google Scholar 

  • Suryanarayana Rao K, Rukmini C, Mohan VS (1968) Carotene content of some yellow-endosperm varieties of sorghum. Indian J Agric Sci 38:368–372

    Google Scholar 

  • Tan J, Baisakh N, Oliva N et al (2005) The screening of rice germplasm, including those transgenic rice lines which accumulate β-carotene in their polished seeds, for their carotenoid profile. Int J Food Sci Technol 40:563–569

    Article  CAS  Google Scholar 

  • Tonon RV, Baroni AF, Hubinger MD (2007) Osmotic dehydration of tomato in ternary solutions: influence of process variables on mass transfer kinetics and an evaluation of the retention of carotenoids. J Food Eng 82:509–517

    Article  Google Scholar 

  • Trono D, Pastore D, Di-Fonzo N (1999) Carotenoid dependent inhibition of durum wheat lipoxygenase. J Cereal Sci 29:99–102

    Article  CAS  Google Scholar 

  • Tsimidou M (1997) Kinetic studies of saffron (Crocus sativus L.) quality deterioration. J Agric Food Chem 45:2890–2898

    Article  CAS  Google Scholar 

  • Van Hung P, Hatcher DW (2011) Ultra-performance liquid chromatography (UPLC) quantification of carotenoids in durum-wheat: influence of genotype and environment in relation to the colour of yellow alkaline noodles (YAN). Food Chem 125:1510–1516

    Article  CAS  Google Scholar 

  • Velioglu YS, Mazza G, Gao L et al (1998) Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J Agric Food Chem 46:4113–4117

    Article  CAS  Google Scholar 

  • Wagner LA, Warthesen JJ (1995) Stability of spray-dried encapsulated carrot carotenes. J Food Sci 60:1048–1053

    Article  CAS  Google Scholar 

  • Weber EJ (1987) Carotenoids and tocols of corn grain determinate by HPLC. J Am Oil Chem Soc 8:1129–1134

    Article  Google Scholar 

  • Wong JC, Lambert RJ, Wurtzel ET et al (2004) QTL and candidate genes phytoene synthase and ζ-carotene desaturase associated with the accumulation of carotenoids in maize. Theor Appl Genet 108:349–359

    Article  PubMed  CAS  Google Scholar 

  • Wurtzel ET, Cuttriss A, Vallabhaneni R (2012) Maize provitamin A carotenoids, current resources, and future metabolic engineering challenges. Front Plant Sci 3:29

    Article  PubMed Central  PubMed  Google Scholar 

  • Ye X, Al-Babili S, Klöti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303–305

    Article  PubMed  CAS  Google Scholar 

  • Zepka LQ, Borsarelli CD, Azevedo MA et al (2009) Thermal degradation kinetics of carotenoids in a cashew apple juice model and its impact on the system color. J Agric Food Chem 57:7841–7845

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Lukaszewski AJ, Kolmer J et al (2005) Molecular characterization of durum and common wheat recombinant lines carrying leaf rust resistence (Lr19) and yellow pigment (Y) genes from Lophopyrum ponticum. Theor Appl Genet 111:573–582

    Article  PubMed  CAS  Google Scholar 

  • Zhou K, Yu L (2004a) Antioxidant properties of bran extracts from Trego wheat grown at different locations. J Agric Food Chem 52:1112–1117

    Article  PubMed  CAS  Google Scholar 

  • Zhou K, Yu L (2004b) Effects of extraction solvent on wheat bran antioxidant activity estimation. Lebensm Wiss Technol 37:717–721

    Article  CAS  Google Scholar 

  • Zhou K, Laux JJ, Yu L (2004a) Comparison of swiss red wheat grain fractions for their antioxidant properties. J Agric Food Chem 52:1118–1123

    Article  PubMed  CAS  Google Scholar 

  • Zhou K, Su L, Yu L (2004b) Phytochemicals and antioxidant properties in wheat bran. J Agric Food Chem 52:6108–6114

    Article  PubMed  CAS  Google Scholar 

  • Zhu C, Naqvi S, Breitenbach J et al (2008) Combinatorial genetic transformation generates a library of metabolic phenotypes for the carotenoid pathway in maize. Proc Natl Acad Sci USA 105:18232–18237

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Žilić S, Serpen A, Akillioğlu G et al (2012) Distribution of phenolic compounds, yellow pigments and oxidative enzymes in wheat grains and their relation to antioxidant capacity of bran and debranned flour. J Cereal Sci 56:562–568

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from the Ministerio de Ciencia e Innovación (Spanish Government, Projects AGL2010-14850/ALI and AGL2014-53195R). EMO was the recipient of a JAE-Predoctoral grant (CSIC) co-financed by the ESF. Authors are members of the IBERCAROT Network, funded by CYTED (ref. 112RT0445).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dámaso Hornero-Méndez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mellado-Ortega, E., Hornero-Méndez, D. Carotenoids in cereals: an ancient resource with present and future applications. Phytochem Rev 14, 873–890 (2015). https://doi.org/10.1007/s11101-015-9423-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-015-9423-3

Keywords

Navigation