Skip to main content

Advertisement

Log in

Cytotoxic activity and mechanism of action of metabolites from the Goniothalamus genus

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

The World Health Organization estimates that 4 billion people or 80 % of the population use plants for curative purposes or for their natural health benefits. Accordingly, biodiversity is an important source of active natural products especially used in traditional medicine as healers transmitted knowledge of traditional usage of medicinal plants from generation to generation whereas pharmacologically active compounds within remained obscure. The present review documents cytotoxicity and anti-cancer potential of known compounds of the Goniothalamus species from the Annonaceae family existing in tropical and subtropical Asia and being intensively used for medicinal purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdullah N, Sahibul-Anwar H, Ideris S, Hasuda T, Hitotsuyanagi Y, Takeya K, Diederich M, Choo CY (2013) Goniolandrene A and B from Goniothalamus macrophyllus. Fitoterapia 88:1–6

    Article  CAS  PubMed  Google Scholar 

  • Alali FQ, Zeng L, Zhang Y, Ye Q, Hopp DC, Schwedeler JT, McLaughlin JL (1997a) 4-Deoxyannomontacin and (2,4-cis and trans)-annomontacinone, a new bioactive mono-tetrahydrofuran Annonaceous acetogenins from Goniothalamus giganteus. Bioorg Med Chem 5(3):549–555

    Article  CAS  PubMed  Google Scholar 

  • Alali FQ, Zhang Y, Rogers L, Mclaughlin JL (1997b) (2,4-cis and trans)-Gigantecinone and 4-deoxygigantecin, bioactive nonadjacent bis-tetrahydrofuran annonaceous actogenins from Goniothalamus giganteus. J Nat Prod 60(9):929–933

    Article  CAS  PubMed  Google Scholar 

  • Alali FQ, Rogers L, Zhang Y, Mclaughlin JL (1998a) Unusual bioactive Annonaceous acetogenins from Goniothalamus giganteus. Tetrahedron 54:5833–5844

    Article  CAS  Google Scholar 

  • Alali FQ, Zhang Y, Rogers L, Mclaughlin JL (1998b) Mono-tetrahydofuran acetogenins from G. giganteus. Phytochemistry 49(3):761–768

    Article  CAS  PubMed  Google Scholar 

  • Alkofahi A, Ma WW, McKenzie AT, Byrn SR, McLaughlin JL (1989) Goniotriol from G. giganteus. J Nat Prod 52(6):1371–1373

    Article  CAS  PubMed  Google Scholar 

  • Alkofahi A, Rupprecht JK, Liu YM, Chang CJ, Smith DL, McLaughlin JL (1990) Gigantecin: a novel antimitotic and cytotoxic actogenin, with nonadjacent tetrahydrofuran rings, from Goniothalamus giganteus. Experientia 46(5):539–541

    Article  CAS  PubMed  Google Scholar 

  • Cao SG, Wu XH, Tan BKH, Pereira JT, Goh SH (1998) Styryl-lactone derivatives and alkaloids from G. borneensis (Annonaceae). Tetrahedron 54:2143–2148

    Article  CAS  Google Scholar 

  • Chen Y, Jiang Z, Chen RR, Yu DQ (1998) Two linear acetogenins from Goniothalamus gardneri. Phytochemistry 49(5):1317–1321

    Article  CAS  PubMed  Google Scholar 

  • Chen WF, Wu CC, Lan YH, Chang FR, Teng CM, Wu YC (2005) Goniothalamin induces cell cycle-specific apoptosis by modulating the redox status in MDA-MB-231 cells. Eur J Pharmacol 522:20–29

    Article  CAS  PubMed  Google Scholar 

  • Fang XP, Anderson JE, Chang CJ, Fanwick PE, McLaughlin JL (1990) Novel bioactive styryl-lactones: goniofufurone, goniopypyrone and 8-acetylgoniotriol from G. giganteus (Annonaceae). X-ray molecular structure of goniofufurone and of goniopypyrone. J Chem Soc Perkin Trans 1(6):1655–1661

    Article  Google Scholar 

  • Fang XP, Anderson JE, Chang CJ, McLaughlin JL (1991) Three new bioactive styryl lactones from G. giganteus (Annonaceae). Tetrahedron 47(47):9751–9758

    Article  CAS  Google Scholar 

  • Fang XP, Anderson JE, Smith DL, McLaughlin JL (1992) Gigantetronenin and gigantrionenin: novel cytotoxic acetogenins from Goniothalamus giganteus. J Nat Prod 55(11):1655–1663

    Article  CAS  PubMed  Google Scholar 

  • Fang XP, Andenson JE, Qiu XX, Kozlowski JF, Chang CJ, McLaughlin JL (1993a) Gonioheptolides A and B: novel eight membered ring lactones from G. giganteus (Annonaceae). Tetrahedron 49(8):1563–1570

    Article  CAS  Google Scholar 

  • Fang XP, Song R, Gu ZM, Rieser MJ, Miesbauer LR, Smith DL, McLaughlin JL (1993b) A new type of cytotoxic annonaceous acetogenin: giganin from Goniothalamus giganteus. Bioorg Med Chem Lett 3(6):1153–1156

    Article  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  • Inayat-Hussain SH, Annuar BO, Din LB, Ali AM, Snowden RT, MacFarlane M, Cain K (1999) Caspase-3 and -7 are activated in goniothalamin-induced apoptosis in human Jurkat T-cells. FEBS Lett 456:379–383

    Article  CAS  PubMed  Google Scholar 

  • Inayat-Hussain SH, Osman AB, Din LB, Taniguchi N (2002) Altholactone, a novel styryl-lactone induces apoptosis via oxidative stress in human HL-60 leukemia cells. Toxicol Lett 131:153–159

    Article  CAS  PubMed  Google Scholar 

  • Inayat-Hussain SH, Annuar BO, Din LB, Ali AM, Ross D (2003) Loss of mitochondrial transmembrane potential and caspase-9 activation during apoptosis induced by the novel styryl-lactone goniothalamin in HL-60 leukemia cells. Toxicol In Vitro 17(4):433–439

    Article  CAS  PubMed  Google Scholar 

  • Jiang Z, Yu DQ (1997) New type of mono-tetrahydrofuran ring acetogenin from Goniothalamus donnaiensis. J Nat Prod 60:122–125

    Article  CAS  Google Scholar 

  • Jiang Z, Chen Y, Chen RY, Yu DQ (1998) Linear acetogenins from Goniothalamus donnaiensis. Phytochemistry 49(3):769–775

    Article  CAS  PubMed  Google Scholar 

  • Johnson TA, Sohn J, Ward AE, Cohen TL, Long-Roach ND, Chen H, Pilli RA, Widjaja EA, Hanafi M, Kardono LBS, Lotulung PD, Boundy-Mills K, Bjeldanes LF (2013) (+)-Altholactone exhibits broad spectrum immune modulating activity by inhibiting the activation of pro-inflammatory cytokines in RAW 264.7 cell lines. Bioorg Med Chem 21:4358–4364

    Article  CAS  PubMed  Google Scholar 

  • Lan YH, Chang FR, Yu JH, Yang YL, Lee SJ, Wu YC (2003) Cytotoxic styrylpyrones from G. amuyon. J Nat Prod 66:487–490

    Article  CAS  PubMed  Google Scholar 

  • Lee ALC, Azimathtol HLP, Tan AN (2003) Styrylpyrone derivative (SPD) induces apoptosis in caspase-7-dependent manner in the human breast cancer cell line MCF-7. Cancer Cell Int 3(1):16

    Article  PubMed Central  PubMed  Google Scholar 

  • Lekphrom R, Kanokmedhakul S, Kanokmedhakul K (2009) Bioactive styryllactones and alkaloid from flowers of G. laoticus. J Nat Prod 125:47–50

    CAS  Google Scholar 

  • Li X, Chang CJ (1996) Antitumor cytotoxicity and stereochemistry of polyketides from G. amuyon. Nat Prod Res 8(3):207–215

    CAS  Google Scholar 

  • Miyoshi H, Ohshima M, Shimada H, Akagi T, Iwamura H, McLaughlin JL (1998) Essential structural factors of annonaceous actogenins as potent inhibitors of mitochondrial complex I. Biochim Biophys Acta 1365:443–452

    Article  CAS  PubMed  Google Scholar 

  • Mu Q, Tang WD, Liu RY, Li CM, Lou LG, Sun HD, Hu CQ (2003) Constituents from the stems of G. griffithii. Planta Med 69:826–830

    Article  CAS  PubMed  Google Scholar 

  • Orbelis NH, Chang CJ, McLaughlin JL (1997) Structure-activity relationships of diverse annonaceous acetogenins against multidrug resistant human mammary adenocarcinoma (MCF-7/Adr) cells. J Med Chem 40:2102–2106

    Article  Google Scholar 

  • Orlikova B, Schumacher M, Juncker T, Choo CY, Inayat-Hussain SH, Hajjouli S, Cerella C, Dicato M, Diederich M (2013) Styryl lactone goniothalamin inhibits TNF-α-induced NF-κB activation. Food Chem Toxicol 59:572–578

    Article  CAS  PubMed  Google Scholar 

  • Peris E, Estornell E, Cabedo N, Cortes D, Bermejo A (2000) 3-Acetylaltholactone and related styryl-lactones, mitochondrial respiratory chain inhibitors. Phytochemistry 54(3):311–315

    Article  CAS  PubMed  Google Scholar 

  • Prawat U, Chaimanee S, Butsuri A, Salae AW, Tuntiwachwuttikul P (2012) Bioactive styryllactones, two new naphthoquinones and one new styryllactone, and other constituents from G. scortechinii. Phytochem Lett 5(3):529–534

    Article  CAS  Google Scholar 

  • Seidel V, Bailleul Ë, Waterman PG (2000) (Rel)- 1β, 2α-di-(2, 4-dihydroxybenzoyl)-3β, 4α-di-(4-methoxyphenyl)-cyclobutane and other flavanoids from the aerial parts of G. gardneri and G. thwaitesii. Phytochemistry 55:439–446

    Article  CAS  PubMed  Google Scholar 

  • Soonthornchareonnon N, Suwanborirux K, Bavovada R, Patarapanich C, Cassady JM (1999) New cytotoxic 1-azaanthraquinones and 3-aminonaphthoquinone from the stem bark of G. marcanii. J Nat Prod 62:1390–1394

    Article  CAS  PubMed  Google Scholar 

  • Tantithanaporn S, Wattanapiromsakul C, Itharat A, Keawpradub N (2011) Phytomedicine cytotoxic activity of acetogenins and styryl lactones isolated from G. undulatus Ridl root extracts against a lung cancer cell line (COR-L23). Eur J Int Med 18(6):486–490

    CAS  Google Scholar 

  • Tip-pyang S, Limpipatwattana Y, Khumkratok S, Siripong P, Sichaem J (2010) A new cytotoxic 1-azaanthraquinone from the stems of G. laoticus. Fitoterapia 81(7):894–896

    Article  CAS  PubMed  Google Scholar 

  • Tormo JR, Gallardo T, Aragon R, Cortes D, Estornell E (1999) Specific interactions of monotetrahydrofuranic annonaceous acetogenins as inhibitors of mitochondrial complex I. Chem Biol Interact 122:171–183

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Zhang YJ, Chen RY, Yu DQ (2002) Goniolactones A-F, six new styrylpyrone derivatives from the roots of G. cheliensis. J Nat Prod 65:835–841

    Article  CAS  PubMed  Google Scholar 

  • Wu YC, Duh CY, Chang FR, Chang GY (1991) The crystal structure and cytotoxicity of goniodiol-7-monoacetate from G. amuyon. J Nat Prod 54(4):1077–1081

    Article  CAS  PubMed  Google Scholar 

  • Wu YC, Chang FR, Duh CY, Wang SK (1992) Cytotoxic styryllactones of G. amuyon. Phytochemistry 31(8):2851–2853

    Article  CAS  Google Scholar 

  • Yen CY, Chiu CC, Haung RW, Yeh CC, Huang KJ, Chang KF, Hseu YC, Chang FR, Chang HW, Wu YC (2012) Antiproliferative effects of goniothalamin on Ca9-22 oral cancer cells through apoptosis, DNA damage and ROS induction. Mutat Res Genet Toxicol Environ 747:253–258

    Article  CAS  Google Scholar 

  • Yuan SSF, Chang HL, Chen HW, Yeh YT, Kao YH, Lin KH (2003) Annonacin, a mono-tetrahydrofuran acetogenin, arrests cancer cells at the G1 phase and cause cytotoxicity in a Bax- and caspase-3 related pathway. Life Sci 72:2853–2861

    Article  CAS  PubMed  Google Scholar 

  • Zeng L, Zhang Y, Ye Q, Shi G, He K, Mclaughlin JL (1996a) cis-Gigantrionenin and 4-acetyl gigantetrocin A, two new bioactive annonaceous acetogenins from G. giganteus, and the stereochemistries of acetogenin 1, 2, 5-triols. Bioorg Med Chem 4(8):1271–1279

    Article  CAS  PubMed  Google Scholar 

  • Zeng L, Zhang Y, Mclaughlin JL (1996b) Gigantransenins A, B, and C, novel mono-THF acetogenins bearing double bonds, from G. giganteus. Tetrahedron Lett 37(31):5449–5452

    Article  CAS  Google Scholar 

  • Zhang YJ, Zhou XG, Yun R, Yu DQ (1999) Styryl lactones from the rhizomes of G. griffithii. J Asian Nat Prod Res 1:189–197

    Article  CAS  PubMed  Google Scholar 

  • Zhong L, Li CM, Haq XJ, Lou LG (2005) Induction of leukemia cell apoptosis by cheliensisin A involves down-regulation of Bcl-2 expression. Acta Pharmacol Sin 26(5):623–628

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

M.D.’s research is financially supported by “Recherche Cancer et Sang” foundation, by «Recherches Scientifiques Luxembourg» asbl, by «Een Häerz fir Kriibskrank Kanner» association, the Action Lions “Vaincre le Cancer” Luxembourg, Télévie Luxembourg, the National Research Foundation (NRF) by the MEST of Korea for Tumor Microenvironment Global Core Research Center (GCRC) grant, [Grant Number 2012-0001184]. Choo is grateful to the UiTM’s RIF and PSI fund for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chee-Yan Choo or Marc Diederich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choo, CY., Abdullah, N. & Diederich, M. Cytotoxic activity and mechanism of action of metabolites from the Goniothalamus genus. Phytochem Rev 13, 835–851 (2014). https://doi.org/10.1007/s11101-014-9372-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-014-9372-2

Keywords

Navigation