Skip to main content
Log in

The effects of para-hydroxybenzoic acid treatment on photosynthetic parameters of Populus × euramericana “Neva”

  • Original paper
  • Published:
Photosynthetica

Abstract

As a common tree species in northern China, Populus × euramericana “Neva” has an important practical value for the study of continuous cropping obstacles in poplar cultivation. Plant allelopathy is the main reason for continuous cropping obstacles, which are caused by allelochemicals, such as para-hydroxybenzoic acid (p-HB). The objective of this study was to investigate the effects of p-HB on the photosynthesis of poplar. Photosynthetic parameters of Populus × euramericana “Neva” poplar were determined in a pot culture experiment where five p-HB concentrations were used (0, 1, 2, 4, and 6 mmol L−1). Each seedling was treated with 4 L of p-HB solution every seven days, ten times in total. p-HB inhibited the photosynthesis of poplar significantly, as shown by a clear decline in the net photosynthetic rate. Our results indicated nonstomatal limitation responsible for the photosynthesis reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AQY:

apparent quantum yield

C a :

air CO2 concentration

C i :

intercellular CO2 concentration

Chl:

chlorophyll

E :

transpiration rate

F0 :

minimal fluorescence yield of the dark-adapted state

F0' :

minimal fluorescence yield of the light-adapted state

Fm :

maximal fluorescence yield of the dark-adapted state

Fm':

maximal fluorescence yield of the light-adapted state

Fs :

steadystate fluorescence yield

Fv :

variable fluorescence

Fv/Fm :

maximal quantum yield of PSII photochemistry

g s :

stomatal conductance

LCP:

light-compensation point

Ls :

stomatal limitation

LSP:

light-saturation point

NPQ:

nonphotochemical quenching

p-HB:

para-hydroxybenzoic acid

P N :

net photosynthetic rate

P Nmax :

light-saturated net photosynthetic rate

qP :

photochemical quenching coefficient

R D :

respiration rate

WUE:

water-use efficiency

ФPSII :

effective quantum yield of PSII photochemistry.

References

  • Baker N.R.: Chlorophyll fluorescence: a probe of photosynthesis in vivo. — Annu. Rev. Plant Biol. 59: 89–113, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Baker N.R., Rosenqvist E.: Applications of chlorophyII fluorescence can improve crop production strategies: an examination of future possibilities. — J. Exp. Bot. 55: 1607–1621, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Berry J.A., Downton W.J.S.: Environmental regulation of photosynthesis. — In: Govindjee (ed.): Photosynthesis, Vol.II. Pp. 265–335. Academic Press, New York 1982.

    Google Scholar 

  • Brack W., Frank H.: Chlorophyll a fluorescence: a tool for the investigation of toxic effects in the photosynthetic apparatus. — Ecotox. Environ. Safe. 40: 34–41, 1998.

    Article  CAS  Google Scholar 

  • Chen D.J., Gao P.J, Wu X.B. et al.: [Chloroplast Ultrastructure and emission fluorescence spectrum characteristics for stems of Phyllostachys pubescens.]. — Chin. Bull. Bot. 48: 635–642, 2013. [In Chinese]

    CAS  Google Scholar 

  • Chen H.X., Chen W., Jiang C.D. et al.: [Effects of temperature and light treatment on violaxanthin de-epoxidase activity and xanthophyll cycle-dependent energy dissipation in wheat leaves.]. — Chin. J. Plant. Ecol. 32: 1015–1022, 2008. [In Chinese]

    CAS  Google Scholar 

  • Chen W.Y., Chen Z.Y., Luo F.Y. et al.: [Comparison between modified exponential model and common models of lightresponse curve.]. — Chin. J. Plant. Ecol. 36: 1277–1285, 2012a. [In Chinese]

    Article  Google Scholar 

  • Chen Z.C., Wang R.R., Wang Z.W. et al.: [Light response of photosynthesis of Koelreuteria paniculata Laxm. under different soil water conditions.]. — Sci. Soil Water Conserv. 10: 105–110, 2012b. [In Chinese]

    Google Scholar 

  • Farquhar G.D., Sharkey T.D.: Stomatal conductance and photosynthesis. — Annu. Rev. Plant Phys. 33: 317–345,1982.

    Article  CAS  Google Scholar 

  • Fu W., Li P., Wu Y.: Effects of different light intensities on chlorophyll fluorescence characteristics and yield in lettuce. — Sci. Hortic.-Amsterdam 135: 45–51, 2012.

    Article  CAS  Google Scholar 

  • Han W.H.: [The Migration and Diffusion Models of Phenolic Pollutants in the Songhua River and Carbon Emergency Measures.]. — Master Thesis. Harbin Institute of Technology, Harbin 2010. [In Chinese]

    Google Scholar 

  • Han G., Zhao Z.: [Light response characteristics of photosynthesis of four xerophilous shrubs under different soil moistures.]. — Acta Ecol. Sinica 30: 4019–4026, 2010. [In Chinese]

    CAS  Google Scholar 

  • Krause G.H., Weis E.: Chlorophyll fluorescence and photosynthesis: the basics. — Annu. Rev. Plant Biol. 42: 313–349,1991.

    Article  CAS  Google Scholar 

  • Kuiters A.T., Sarink H.M.: Leaching of phenolic compounds from leaf and needle litter of several deciduous and coniferous trees. — Soil Biol. Biochem. 18: 475–480, 1986.

    Article  CAS  Google Scholar 

  • Lang Y., Zhang G.C., Zhang Z.K. et al.: [Light response of photosynthesis and its simulation in leaves of Prunus sibirica L. under different soil water conditions.]. — Acta Ecol. Sinica 31: 4499–4508, 2011. [In Chinese]

    Google Scholar 

  • Li S., Yang W., Yang T. et al.: Effects of cadmium stress on leaf chlorophyll fluorescence and photosynthesis of Elsholtzia argyi. — a cadmium accumulating plant. — Int. J. Phytoremediat. 17: 85–92, 2015.

    Article  CAS  Google Scholar 

  • Li S.T., Zhou J.M., Wang H.Y. et al.: [Research surveys of allelopathy in plants.]. — Chin. J. Ecoagricult. 10: 68–70, 2002. [In Chinese]

    Google Scholar 

  • Liang F., Zheng C.S., Shun X.Z., Wang W.L.: [Effects of low temperature-and weak light stress and its recovery on the photosynthesis and chlorophyll fluorescence parameters of cut flower chrysanthemum.]. — Chin. J. Appl. Ecol. 21: 29–35, 2010. [In Chinese]

    CAS  Google Scholar 

  • Liu C.Y., Chen D.Y., Gai S.P. et al.: [Effects of high-and low temperature stress on the leaf PSII functions and physiological characteristics of tree peony (Paeonia suffruticosa cv. ‘Roufurong’).]. — Chin. J. Appl. Ecol. 23: 133–139, 2012. [In Chinese]

    Google Scholar 

  • Massacci A., Nabiev S.M., Pietrosanti L. et al.: Response of the photosynthetic apparatus of cotton (Gossypium hirsutum) to the onset of drought stress under field conditions studied by gasexchange analysis and chlorophyll fluorescence imaging. — Plant Physiol. Bioch. 46: 189–195,2008.

    Article  CAS  Google Scholar 

  • Makoi J., Ndakidemi P.A.: Biological, ecological and agronomic significance of plant phenolic compounds in rhizosphere of the symbiotic legumes. — Afr. J. Biotechnol. 6: 1358–1368, 2007.

    CAS  Google Scholar 

  • Maxwell K., Johnson G.N.: Chlorophyll fluorescence. — a practical guide. — J. Exp. Bot. 51: 659–668, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Nijs I., Ferris R., Blum H. et al.: Stomatal regulation in a changing climate: A field study using free air temperature increase (FATI) and free air CO2 enrichment (FACE). — Plant Cell Environ. 20: 1041–1050, 1997.

    Article  Google Scholar 

  • Ouzounidou G., Asfi M., Sortirakis N. et al.: Olive mill wastewater triggered changes in physiology and nutritional quality of tomato (Lycopersicon esculentum Mill.) depending on growth substrate. — J. Hazard. Mater. 158: 523–530, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Patrick Z.A.: Phytotoxic substances associated with the decomposition in soil of plant residues. — Soil Sci. 111: 13–18, 1971.

    Article  CAS  Google Scholar 

  • Piñol R., Simón E.: Effect of 24-epibrassinolide on chlorophyll fluorescence and photosynthetic CO2 assimilation in Vicia faba plants treated with the photosynthesis-inhibiting herbicide terbutryn. — J. Plant Growth Regul. 28: 97–105,2009.

    Article  Google Scholar 

  • Qian Y.Q., Zhou X.X., Han L. et al.: [Rapid light-response curves of PSII chlorophyll fluorescence parameters in leaves of Salix leucopithecia subjected to cadmium-ion stress.]. — Acta Ecol. Sinica 31: 6134–6142, 2011. [In Chinese]

    CAS  Google Scholar 

  • Rice E.L.: Allelopathy. Pp. 353. Academic Press, New York 1974.

    Google Scholar 

  • Singh H.P., Batish D.R., Kohli R.K.: Allelopathy in agroecosystems: an overview. — J. Crop Prod. 4: 1–41,2001.

    Article  CAS  Google Scholar 

  • Su X., Hu D.Q., Lin Z.F. et al.: [Effect of air pollution on the chlorophyll fluorescence characters of two afforestation plants in Guang Zhou.]. — Chin. J. Plant. Ecol. 26: 599–604, 2002. [In Chinese]

    CAS  Google Scholar 

  • Sun H.J., Sun L.Q., Wang Q. et al.: [Effects of benzoic acid and cinnamic acid on radicle growth, microstructure and ultrastructure of watermelon.]. — Acta Agric. Boreali-Sinica 21: 77–80, 2006. [In Chinese]

    Google Scholar 

  • Tan X.M., Wang H.T., Kong L.G. et al.: [Accumulation of phenolic acids in soil of a continuous cropping Poplar plantation and their effects on soil microbes.]. — J. Shandong Univ.-Nat. Sci. 43: 14–19, 2008. [In Chinese]

    Google Scholar 

  • Vaughan D., Ord B.: Influence of phenolic acids on morpholigical changes in roots of Pisum sativum. — J. Sci. Food Agr. 52: 289–299, 1990.

    Article  CAS  Google Scholar 

  • Wang L., Yang H.Q., Fan W.G., Zhang Z.: [The effect of CdCl2 treatment on photosynthetic rate and chlorophyll a fluorescence parameters in Malus hupehensis leaves.]. — Sci. Agric. Sinica 43: 3176–3183, 2010a. [In Chinese]

    CAS  Google Scholar 

  • Wang S.L, Chen L.C., Liao L.P.: [Effects of three kinds of allelochemicals on growth of chinese fir seedlings.]. — Chin. J. Appl. Environ. Biol. 8: 588–591, 2002. [In Chinese]

    CAS  Google Scholar 

  • Wang Y.M., Cai H.J., Wang J.: [The influence of intercropping of wheat and pepper on photosynthetically active radiation and soil temperature.]. — Chin. Rural Water Hydrop. 1: 14–19, 2010b. [In Chinese]

    Google Scholar 

  • Wang S.J.: Advances in Polar Research. Pp. 413–413. China Forestry Publishing House, Beijing 1995.

    Google Scholar 

  • Weidenhamer J.D., Romeo J.T.: Allelochemicals of Polygonella myriophylla: Chemistry and soil degradation. — J. Chem. Ecol. 30: 1067–1082, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Xu D.Q.: The Efficiency of Photosynthesis. Pp. 112–121. Sci. & Technol. Press. Shanghai 2002.

    Google Scholar 

  • Ye Z.P., Yu Q.: [Comparison of a new model of light response of photosynthesis with traditional models.]. — J. Shenyang Agr. Univ. 38: 771–775, 2007. [In Chinese]

    CAS  Google Scholar 

  • Zhao H.Y., Lu S.F., Chao R.T.: [Studies on tissue culture and gene engineering of poplar.]. — Chin. Bull. Bot. 18: 169–176, 2001. [In Chinese]

    Google Scholar 

  • Zhu Y.H., Tu N.M., Xiao H.Q., Zhang G.: [Effect of sulfur on chlorophyll fluorescence of flue-cured tobacco at maturation stage.]. — Acta Ecol. Sinica 31: 3796–3801, 2011. [In Chinese]

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. C. Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, G.T., Zhang, S.Y., Guo, J. et al. The effects of para-hydroxybenzoic acid treatment on photosynthetic parameters of Populus × euramericana “Neva”. Photosynthetica 56, 505–511 (2018). https://doi.org/10.1007/s11099-017-0713-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-017-0713-4

Additional key words

Navigation