Skip to main content
Log in

Leaf trait plasticity in six forest tree species of central Amazonia

  • Original papers
  • Published:
Photosynthetica

Abstract

Tropical rainforest trees adjust leaf traits during ontogeny to cope with changes in the physical environment and maximize their carbon uptake. The aim of this study was to determine the plasticity index (PI) of leaf traits in understory and canopy leaves of six Amazonian tree species. In four of the six species the PI of leaf traits varied within species, and in four of the ten leaf traits assessed, the PI differed between species. The greatest PI values were found for stomatal density (Ds) and CO2-saturated photosynthesis, and the lowest ones were found for stomatal size, and leaf thickness. Despite the differences in PI values within species, the mean PI was similar in all the six species. As the saplings grow toward the canopy, the strategy to increase carbon uptake involves increasing Ds and leaf nitrogen and reducing stomatal size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Ds :

stomatal density

E :

transpiration

g s :

stomatal conductance

Nleaf :

leaf nitrogen

NUE:

nitrogen-use efficiency

PI :

plasticity index

P Nmax :

light-saturated net photosynthetic rate

P Npot :

light and CO2-saturated net photosynthetic rate

SLM:

specific leaf mass

Ss :

stomatal size

Tleaf :

fresh leaf thickness

WUE:

water-use efficiency

References

  • Aasamaa K., Sõber A., Rahi M.: Leaf anatomical characteristics associated with shoot hydraulic conductance, stomatal conductance and stomatal sensitivity to changes of leaf water status in temperate deciduous trees. — Aust. J. Plant Physiol. 28: 765–774, 2001.

    Google Scholar 

  • Al Afas N., Marron N., Ceulemans R.: Clonal variation in stomatal characteristics related to biomass production of 12 poplar (Populus) clones in a short rotation coppice culture. — Environ. Exp. Bot. 58: 279–286, 2006.

    Article  Google Scholar 

  • Ambrose A.R., Sillett S.C., Koch G.W. et al.: Effects of height on treetop transpiration and stomatal conductance in coast redwood (Sequoia sempervirens). — Tree Physiol. 30: 1260–1272, 2010.

    Article  PubMed  Google Scholar 

  • Bakker J.C.: Effects of humidity on stomatal density and its relation to leaf conductance. — Sci. Hortic.-Amsterdam 48: 205–212, 1991.

    Article  Google Scholar 

  • Bell G., Lechowicz M.J.: Spatial heterogeneity at small scales and how plants respond to it.–In: Roy J., Caldwell M.M., Pearce R.P. (ed.): Exploitation of Environmental Heterogeneity by Plants: Ecophysiological Processes above- and below Ground. Pp. 391–414. Academic Press, New York 1994.

    Chapter  Google Scholar 

  • Bento M.: [Carbon assimilation, water use efficiency, stomatal and mesophyll conductance and electron transport rate in canopy trees of Dinizia excelsa Ducke (Fabaceae, Mimosoideae)]. — MSc. Thesis. Forest Science Graduate Program. National Institute for Research in the Amazon, Manaus 2012. [In Portuguese]

    Google Scholar 

  • Berger D., Altmann T.: A subtilisin-like serine protease involved in the regulation of stomatal density and distribution in Arabidopsis thaliana. — Gene. Dev. 14: 1119–1131, 2000.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bixenmann R.J., Coley P.D., Weinhold A., Kursar T.A.: High herbivore pressure favors constitutive over induced defense. — Ecol. Evol. 6: 6037–6049, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  • Björkman O.: Responses to different quantum f1ux densities.–In: Lange O.L., Nobel P.S., Osmond C.B., Ziegler H. (ed.): Physiological Plant Ecology: Responses to the Physical Environment. Pp. 57–107. Springer Verlag, New York 1981.

    Google Scholar 

  • Boeger M.R.T., Alves L.C., Negrelle R.R.B.: Leaf morphology of 89 tree species from a lowland tropical rain forest (Atlantic forest) in South Brazil. — Braz. Arch. Biol. Techn. 47: 933–943, 2004.

    Article  Google Scholar 

  • Bradshaw A.D.: Evolutionary significance of phenotypic plasticity in plants. — Adv. Genet. 13: 115–155, 1965.

    Google Scholar 

  • Camargo M.A.B., Marenco R.A.: Density, size and distribution of stomata in 35 rainforest tree species in Central Amazonia. — Acta Amazon. 41: 205–2012, 2011.

    Article  Google Scholar 

  • Coley P.D.: Effects of plant growth rate and leaf lifetime on the amount and type of anti-herbivore defense. — Oecologia 74: 531–536, 1988.

    Article  CAS  PubMed  Google Scholar 

  • El-Sharkawy M.A., Cock J.H., Hernandez A.D.P.: Stomatal response to air humidity and its relation to stomatal density in a wide range of warm climate species. — Photosynth. Res. 7: 137–149, 1985.

    Article  CAS  PubMed  Google Scholar 

  • England J.R., Attiwill P.M.: Changes in leaf morphology and anatomy with tree age and height in the broadleaved evergreen species, Eucalyptus regnans F. Muell. — Trees 20: 79–90, 2006.

    Article  Google Scholar 

  • Franks P.J., Beerling D.J.: Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. — P. Natl. Acad. Sci. USA 106: 10343–10347, 2009.

    Article  CAS  Google Scholar 

  • Furukawa A.: Stomatal frequency of Quercus myrsinaefolia grown under different irradiances. — Photosynthetica 34: 195–199, 1998.

    Article  Google Scholar 

  • Galmés J., Flexas J., Savé R., Medrano H.: Water relations and stomatal characteristics of Mediterranean plants with different growth forms and leaf habits: responses to water stress and recovery. — Plant Soil 290: 139–155, 2007.

    Article  Google Scholar 

  • Gindel I.: Stomatal number and size as related to soil moisture in tree xerophytes in Israel. — Ecology 50: 263–267, 1969.

    Article  Google Scholar 

  • Givnish T.J.: Adaptation to sun and shade: a whole-plant perspective. — Aust. J. Plant Physiol. 15: 63–92, 1988.

    Article  Google Scholar 

  • Hetherington A.M., Woodward F.I.: The role of stomata in sensing and driving environmental change. — Nature 424: 901–908, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Ichie T., Inoue Y., Takahashi N. et al.: Ecological distribution of leaf stomata and trichomes among tree species in a Malaysian lowland tropical rain forest. — J. Plant Res. 129: 625–635, 2016.

    Article  PubMed  Google Scholar 

  • Jarvis P.G., McNaughton K.G.: Stomatal control of transpiration: scaling up from leaf to region. — Adv. Ecol. Res. 15: 1–49, 1986.

    Article  Google Scholar 

  • Kenzo T., Inoue Y., Yoshimura M. et al.: Height-related changes in leaf photosynthetic traits in diverse Bornean tropical rain forest trees. — Oecologia 177: 191–202, 2015.

    Article  PubMed  Google Scholar 

  • Kenzo T., Yoneda R., Sano M. et al.: Variations in leaf photosynthetic and morphological traits with tree height in various tree species in a Cambodian tropical dry evergreen forest. — JARQ-Jpn Agr. Res. Q. 46: 167–180, 2012.

    Article  Google Scholar 

  • Koch G.W., Sillett S.C., Jennings G. M., Davis S.D.: The limits to tree height. — Nature 428: 851–854, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Lockheart M.J., Poole I., van Bergen P.F., Evershed R.P.: Leaf carbon isotope compositions and stomatal characters: important considerations for paleoclimate reconstructions. — Org. Geochem. 29: 1003–1008, 1998.

    Article  CAS  Google Scholar 

  • Magalhães N.D., Marenco R.A., Mendes K.R.: [Acclimation of manwood seedlings to full sunlight]. — Pesqui. Agropecu. Bras. 44: 687–694, 2009. [In Portuguese]

    Article  Google Scholar 

  • Marenco R.A., Gonçalves J.F.C., Vieira G.: Photosynthesis and leaf nutrient contents in Ochroma pyramidale (Bombacaceae). — Photosynthetica 39: 539–543, 2001.

    Article  CAS  Google Scholar 

  • Marenco R.A., Nascimento H.C.S., Magalhães N.S.: Stomatal conductance in Amazonian tree saplings in response to variations in the physical environment. — Photosynthetica 52: 493–500, 2014.

    Article  Google Scholar 

  • Medri M.E., Lleras E.: [Ecophysiology of Amazonian plants: foliar anatomy and ecophysiology of Bertholletia excelsa. Humb. & Bonpl. (Brazil nut) Lecythidaceae]. — Acta Amazon. 9: 15–23, 1979. [In Portuguese]

    Article  Google Scholar 

  • Nascimento H.C.S., Marenco R.A.: Mesophyll conductance variations in response to diurnal environmental factors in Myrcia paivae and Minquartia guianensis in Central Amazonia. — Photosynthetica 51: 457–464, 2013.

    Article  CAS  Google Scholar 

  • Nejad A.R., Van Meeteren U.: Stomatal response characteristics of Tradescantia virginiana grown at high relative air humidity. — Physiol. Plantarum 125: 324–332, 2005.

    Article  CAS  Google Scholar 

  • Niinemets Ü.: Leaf age dependent changes in within-canopy variation in leaf functional traits: a meta-analysis. — J. Plant Res. 129: 313–338, 2016.

    Article  PubMed  Google Scholar 

  • Niinemets Ü.: Research review components of leaf dry mass per area–thickness and density–alter leaf photosynthetic capacity in reverse directions in woody plants. — New Phytol. 144: 35–47, 1999.

    Article  Google Scholar 

  • Quarrie S.A., Jones H.G.: Effects of abscisic acid and water stress on development and morphology of wheat. — J. Exp. Bot. 28: 192–203, 1977.

    Article  CAS  Google Scholar 

  • Rankin-de-Mérona J.M., Prance G.T., Hutchings R.W. et al.: Preliminary results of a large-scale tree inventory of upland rain forest in the Central Amazon. — Acta Amazon. 22: 493–534, 1992.

    Article  Google Scholar 

  • Rozendaal D.M.A., Hurtado V.H., Poorter L.: Plasticity in leaf traits of 38 tropical tree species in response to light; relationships with light demand and adult stature. — Funct. Ecol. 20: 207–216, 2006.

    Article  Google Scholar 

  • Sack L., Melcher P.J., Liu W.H. et al.: How strong is intracanopy leaf plasticity in temperate deciduous trees?. — Am. J. Bot. 93: 829–839, 2006.

    Article  PubMed  Google Scholar 

  • Salisbury E. J.: On the causes and ecological significance of stomatal frequency, with special reference to the woodland flora. — Philos. T. R. Soc. Lon. B. 216: 1–65, 1927.

    Google Scholar 

  • Schäfer K.V.R., Oren R., Tenhunen J.D.: The effect of tree height on crown level stomatal conductance. — Plant Cell Environ. 23: 365–375, 2000.

    Article  Google Scholar 

  • Schlüter U., Muschak M., Berger D., Altmann T.: Photosynthetic performance of an Arabidopsis mutant with elevated stomatal density (SDD1-1) under different light regimes. — J. Exp. Bot. 54: 867–874, 2003.

    Article  PubMed  Google Scholar 

  • Scoffoni C., Kunkle J., Pasquet-Kok J. et al.: Light-induced plasticity in leaf hydraulics, venation, anatomy, and gas exchange in ecologically diverse Hawaiian lobeliads. — New Phytol. 207: 43–58, 2015.

    Article  CAS  PubMed  Google Scholar 

  • Smith H.: Light quality, photoperception, and plant strategy. — Annu. Rev. Plant Physio. 33: 481–518, 1982.

    Article  CAS  Google Scholar 

  • Stearns S.C.: Evolution of reaction norms.–In: Losos J.B., Baum D.A., Futuyma D.J. et al. (ed.): The Princeton Guide to Evolution. Pp. 261–267. Princeton University Press, New Jersey 2014.

    Google Scholar 

  • Sugano S.S., Shimada T., Imai Y. et al.: Stomagen positively regulates stomatal density in Arabidopsis. — Nature 463: 241–246, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Terashima I., Miyazawa S.I., Hanba Y.T.: Why are sun leaves thicker than shade leaves? Consideration based on analyses of CO2 diffusion in the leaf. — J. Plant Res. 114: 93–105, 2001.

    Article  CAS  Google Scholar 

  • Valladares F., Chico J.M., Aranda I. et al.: The greater seedling high-light tolerance of Quercus robur over Fagus sylvatica is linked to a greater physiological plasticity. — Trees 16: 395–403, 2002.

    CAS  Google Scholar 

  • Valladares F., Niinemets Ü.: Shade tolerance, a key plant feature of complex nature and consequences. — Annu. Rev. Ecol. Evol. S. 39: 237–257, 2008.

    Article  Google Scholar 

  • Valladares F., Wright S.J., Lasso E. et al.: Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest. — Ecology 81: 1925–1936, 2000.

    Article  Google Scholar 

  • Witkowski E.T.F., Lamont B.B.: Leaf specific mass confounds leaf density and thickness. — Oecologia 88: 486–493. 1991.

    Article  CAS  PubMed  Google Scholar 

  • Woodruff D.R., Bond B.J., Meinzer F.C.: Does turgor limit growth in tall trees?‒Plant Cell Environ. 27: 229–236, 2004.

    Article  Google Scholar 

  • Woodward F.I., Kelly C.K.: The influence of CO2 concentration on stomatal density. — New Phytol. 131: 311–327, 1995.

    Article  Google Scholar 

  • Zimmermann M.H.: Hydraulic architecture of some diffuseporous trees. — Can. J. Bot. 56: 2286–2295, 1978.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Marenco.

Additional information

Acknowledgements: We thank to the Ministry of Science, Technology, Innovation and Communication and to the Research Foundation for the State of the Amazon (FAPEAM; grant number: UA 6203164-20.12) for financial support, and the National Council for Scientific and Technological Development (CNPq) for scholarships. We are also grateful to the anonymous reviewers and the Associate Editor for the important comments and suggestions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marenco, R.A., Camargo, M.A.B., Antezana-Vera, S.A. et al. Leaf trait plasticity in six forest tree species of central Amazonia. Photosynthetica 55, 679–688 (2017). https://doi.org/10.1007/s11099-017-0703-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-017-0703-6

Additional key words

Navigation