Skip to main content
Log in

Tolerance mechanisms in Cassia alata exposed to cadmium toxicity – potential use for phytoremediation

  • Original paper
  • Published:
Photosynthetica

Abstract

Cadmium is often detected in areas contaminated by heavy metals and the incidence of this element in dangerous concentrations has been increasing due to anthropogenic activities. The aim of this research was to determine Cd concentrations in tissues, quantify compounds, pigments and enzymes, and to evaluate the gas exchange. Our aim was also to identify components that can modify and contribute to tolerance of Cassia alata against Cd toxicity. We used five Cd concentrations (0, 22, 44, 88, and 132 μM) to validate our hypothesis. The Cd concentrations in tissues of C. alata plants increased significantly, compared with the control treatment, in the following graduated sequence: root > leaf > stem. Progressive enhancement in glutathione (GSH) was verified in plants treated with all Cd concentrations used, when compared with treatment without Cd. Antioxidant enzyme activities presented similar patterns with progressive enhancements, being a desirable characteristic for plants with a potential to hyperaccumulate Cd. Our results suggest that C. alata plants can be used for phytoremediation programs. Their defense mechanism is based on Cd accumulation in roots, coupled with increase in GSH and the efficient activity of antioxidant enzymes that contribute to minimize the oxidative stress and consequently improve the protection of the metabolic machinery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APX:

ascorbate peroxidase

AsA:

ascorbate

BCF:

bioconcentration factor

Car:

carotenoids

CAT:

catalase

Cdns :

Cd concentration in nutritive solution

Cdpt :

Cd concentration in plant tissue

Cds :

Cd concentration in the shoot

Cdr :

Cd concentration in root

Chl:

chlorophyll

C i :

intercellular CO2 concentration

CL50% :

contamination level linked to reduction in dry matter by 50%

CTC:

critical toxic concentration

DMC:

dry matter from the control treatment

E :

transpiration rate

EL:

electrolyte leakage

gs :

stomatal conductance

GSH:

glutathione

MDA:

malondialdehyde

P N :

net photosynthetic rate

P N /C i :

instantaneous carboxylation efficiency

POX:

guaiacol peroxidase

ROS:

reactive oxygen species

SOD:

superoxide dismutase

TF:

translocation factor

TSP:

total soluble proteins

WUE:

water-use efficiency.

References

  • Akhter M.F., McGarvey B., Macfie S.M.: Reduced translocation of cadmium from roots is associated with increased production of phytochelatins and their precursors. — J. Plant Physio. 169:1821–1829, 2012.

    Article  CAS  Google Scholar 

  • Badawi G.H., Yamauchi Y., Shimada E. et al.: Enhanced tolerance to salt and water deficit by overexpressing superoxide dismutase in tobacco (Nicotiana tabacum) chloroplasts. — Plant Sci. 166: 919–928, 2004.

    Article  Google Scholar 

  • Bauddh K., Singh R.P.: Growth, tolerance efficiency and phytoremediation potential of Ricinus communis (L.) and Brassica juncea (L.) in salinity and drought affected cadmium contaminated soil. — Ecotox. Environ. Safe. 85: 13–22, 2012.

    Article  CAS  Google Scholar 

  • Bech J., Duran P., Roca N. et al.: Accumulation of Pb and Zn in Bidens triplinervia and Senecio sp. spontaneous species from mine spoils in Peru and their potential use in phytoremediation. — J. Geochem. Explor. 123: 109–113, 2012.

    Article  CAS  Google Scholar 

  • Bhatt I., Tripathi B.N.: Plant peroxiredoxins: catalytic mechanisms, functional significance and future perspectives. — Biotechnol. Adv. 29: 850–859, 2011

    Article  CAS  PubMed  Google Scholar 

  • Bradford M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. — Anal. Biochem. 72: 246–254, 1976.

    Article  Google Scholar 

  • Braga L.F., Sousa M.P., Braga J.F., Delachiave M.E.A.: [Acid scarification, temperature and light on the germination process of Senna alata (L.) Roxb. seeds.]. — Rev. Bras. Plantas Med. 12: 1–7, 2010. [In Portuguese]

    Article  Google Scholar 

  • Cakmak I., Marschner H.: Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase and glutathione reductase in bean leaves. — Plant Physiol. 98: 1222–1227, 1992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho U., Seo N.: Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. — Plant Sci. 168: 113–120, 2005.

    Article  CAS  Google Scholar 

  • Cunha K.P.V., Nascimento C.W.A., Pimentel R.M.M. et al.: [Cadmium and zinc availability, accumulation and toxicity in maize grown in a contaminated soil.]. — Rev. Bras. Cienc. Solo 32: 1319–1328, 2008. [In Portuguese]

    Article  Google Scholar 

  • Dai Z.Y., Shu W.S., Liao B. et al.: Intraspecific variation in cadmium tolerance and accumulation of a high biomass tropical tree Averrhoa carambola L.: implication for phytoextraction. — J. Environ. Monitor. 13: 1723–1729, 2011.

    Article  CAS  Google Scholar 

  • Degl’Innocenti E., Castagna A., Ranieri A., Guidi L.: Combined effects of cadmium and ozone on photosynthesis of Lycopersicon esculentum. — Photosynthetica 52: 179–185, 2014.

    Article  Google Scholar 

  • Deng G., Li M., Li H. et al.: Exposure to cadmium causes declines in growth and photosynthesis in the endangered aquatic fern (Ceratopteris pteridoides). — Aquat. Bot. 112: 23–32, 2014.

    Article  CAS  Google Scholar 

  • Ekmekçi Y., Tanyolaç B.D., Ayhan B.: Effects of cadmium on antioxidante enzyme and photosynthetic activities in leaves of two maize cultivars. — J. Plant Physiol. 165: 600–611, 2008.

    Article  PubMed  Google Scholar 

  • Faller P., Kienzler K., Krieger-Liszkay A.: Mechanism of Cd2+ toxicity: Cd2+ inhibits photoactivation of Photosystem II by competitive binding to the essential Ca2+ site. — Biochim. Biophys. Acta 1706: 158–164, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Fan K.C., His H.C., Chen C.W. et al.: Cadmium accumulation and tolerance of mahogany (Swietenia macrophylla) seedlings for phytoextraction applications. — J. Environ. Manage. 92: 2818–2822, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Fernandes M.S.: [Mineral Nutrition of Plants]. Pp. 432. SBCS, Viçosa 2006. [In Portuguese]

    Google Scholar 

  • Fernández R., Bertrand A., Reis R. et al.: Growth and physiological responses to cadmium stress of two populations of Dittrichia viscosa (L.) Greuter. — J. Hazard. Mater. 244–245: 555–562, 2013.

    Article  PubMed  Google Scholar 

  • Gill S.S., Tuteja N.: Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. — Plant Physiol. Bioch. 48: 909–930, 2010.

    Article  CAS  Google Scholar 

  • Gratão P.L., Monteiro C.C., Tezotto T. et al.: Cadmium stress antioxidant responses and root-to-shoot communication in grafted tomato plants. — Biometals 28: 803–816, 2015.

    Article  PubMed  Google Scholar 

  • Hartwig I., Oliveira A.C., Carvalho F.I.F. et al.: [Associated mechanisms of aluminum tolerance in plants.]. — Semin. Cienc. Agrar. 28: 219–228, 2007. [In Portuguese]

    Article  CAS  Google Scholar 

  • Hasan S.A., Hayat S., Ali B., Ahmad A.: 28-homobrassinolide protects chickpea (Cicer arietinum) from cadmium toxicity by stimulating antioxidants. — Environ. Pollut. 151: 60–66, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Hasan S.A., Hayat S., Ahmad A.: Brassinosteroids protect photosynthetic machinery against the cadmium induced oxidative stress in two tomato cultivars. — Chemosphere 84: 1446–1451, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Hattab S., Dridi B., Chouba L. et al.: Photosynthesis and growth responses of pea Pisum sativum L. under heavy metals stress. — J. Environ. Sci. 21: 1552–1556, 2009.

    Article  CAS  Google Scholar 

  • Havir E.A., McHale N.A.: Biochemical and development characterization of multiple forms of catalase in tobacco leaves. — Plant Physiol. 84: 450–455, 1987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu Y.T., Kao C.H.: Heat shock-mediated H2O2 accumulation and protection against Cd toxicity in rice seedlings. — Plant Soil 300: 137–147, 2007.

    Article  CAS  Google Scholar 

  • Jia L., Liu Z., Chen W. et al.: Hormesis effects induced by cadmium on growth and photosynthetic performance in a hyperaccumulator, Lonicera japonica Thunb. — J. Plant Growth Regul. 34: 13–21, 2015.

    Article  CAS  Google Scholar 

  • Krämer U.: Metal hyperaccumulation in plants. — Annu. Rev. Plant Biol. 61: 517–534, 2010.

    Article  PubMed  Google Scholar 

  • Liang Y., Zhang W., Chen Q. et al.: Effect of exogenous silicon (Si) on H+-ATPase activity, phospholipids and fluidity of plasma membrane in leaves of salt-stressed barley (Hordeum vulgare L.). — Environ. Exp. Bot. 57: 212–219, 2006.

    Article  CAS  Google Scholar 

  • Lichtenthaler H.K., Buschmann C.: Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy. — Curr. Protoc. Food Anal. Chem. 431–438, 2001.

    Google Scholar 

  • Liu X., Peng K., Wang A. et al.: Cadmium accumulation and distribution in populations of Phytolacca americana L. and the role of transpiration. — Chemosphere 78: 1136–1141, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Lu Z., Zhang Z., Su Y. et al.: Cultivar variation in morphological response of peanut roots to cadmium stress and its relation to cadmium accumulation. — Ecotox. Environ. Safe. 91: 147–155, 2013.

    Article  CAS  Google Scholar 

  • Ma C.C., Gao Y.B., Guo H.Y., Wang J.L.: Photosynthesis, transpiration and water use efficiency of Caragana microphylla, C. intermedia and C. korshinskii. — Photosynthetica 42: 65–70, 2004.

    Article  CAS  Google Scholar 

  • Macnicol R.D., Beckett P.H.T.: Critical tissue concentrations of potentially toxic elements. — Plant Soil 85: 107–129, 1985.

    Article  CAS  Google Scholar 

  • Melo L.C.A., Alleoni L.R.F., Carvalho G., Azevedo R.A.: Cadmium and barium-toxicity effects on growth and antioxidant capacity of soybean (Glycine max L.) plants, grown in two soil types with different physicochemical properties. — J. Plant. Nutr. Soil Sci. 174: 847–859, 2011.

    Article  CAS  Google Scholar 

  • Mohamed A.A., Castagna A., Ranieri A., Toppi L.S.: Cadmium tolerance in Brassica juncea roots and shoots is affected by antioxidant status and phytochelatin biosynthesis. — Plant Physiol. Bioch. 57: 15–22, 2012.

    Article  CAS  Google Scholar 

  • Najeeb U., Jilani G., Ali S. et al.: Insights into cadmium induced physiological and ultra-structural disorders in Juncus effusus L. and its remediation through exogenous citric acid. — J. Hazard. Mater. 186: 565–574, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura S., Suzui N., Nagasaka T. et al.: Application of glutathione to roots selectively inhibits cadmium transport from roots to shoots in oilseed rape. — J. Exp. Bot. 64: 1073–1081, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakano Y., Asada K.: Hydrogen peroxide is scavenged by ascorbate-specific peroxidases in spinach chloroplasts. — Plant Cell Physiol. 22:867–880, 1981.

    CAS  Google Scholar 

  • Paiva H.N., Carvalho J.G., Siqueira J.O.: [Effect of the cadmium application on nutrients content in cedro (Cedrela fissilis VELL.) seedlings.]. — Cienc. Florestal 11: 153–162, 2001. [In Portuguese]

    Article  Google Scholar 

  • Paiva H.N., Carvalho J.G., Siqueira J.O.: [Effect of the cadmium application on nutrients content in cedro (Cedrela fissilis VELL.) seedlings.]. — Cienc. Florestal 11: 153–162, 2001. [In Portuguese]

    Article  Google Scholar 

  • Pan J., Plant J.A., Voulvoulis N. et al.: Cadmium levels in Europe: implications for human health. — Environ. Geochem. Hlth. 32: 1–12, 2010.

    Article  CAS  Google Scholar 

  • Parmar P., Kumari N., Sharma V.: Structural and functional alterations in photosynthetic apparatus of plants under cadmium stress. — Bot. Stud. 54: 1–6, 2013.

    Article  Google Scholar 

  • Pietrini F., Iannelli M.A., Pasqualini S., Massacci A.: Interaction of camium with glutathione and photosynthesis in developing leaves and chloroplasts of Phragmites australis (Cav.) Trin. ex Steudel. — Plant Physiol. 133: 829–837, 2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riaz S., Iqbal M., Hussain I. et al.: Chronic cadmium induced oxidative stress not the DNA fragmentation modulates growth in spring wheat (Triticum aestivum). — Int. J. Agric. Biol. 16: 789–794, 2014.

    CAS  Google Scholar 

  • Sharma P., Jha A.B., Dubey R.S., Pessarakli M.: Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. — J. Bot. 2012: 217037, 2012.

    Google Scholar 

  • Silva F.A.S., Azevedo C.A.V.: [Assistat computational program version for the Windows operating system.]. — Rev. Bras. Prod. Agroindust. 4: 71–78, 2002. [In Portuguese]

    Google Scholar 

  • Silva J.R.R., Fernandes A.R., Perez D.V.: Phytoextraction of heavy metals from a landfill in the metropolitan region of Belém-Pará-Brazil. — Rev. Ciênc. Agrar. 57: 429–438, 2014.

    Google Scholar 

  • Singh S., Khan N.A., Nazar R., Anjum N.A.: Photosynthetic traits and activities of antioxidant enzymes in blackgram (Vigna mungo L. Hepper) under cadmium stress. — Am. J. Plant Phys. 3: 25–32, 2008.

    Article  CAS  Google Scholar 

  • Soares C.R.F.S., Siqueira J.O., Carvalho J.G., Moreira F.M.S.: [Cadmium phytotoxity to Eucalyptus maculata and E. urophylla in nutrient solution.]. — Rev. Árvore 29: 175–183, 2005. [In Portuguese]

    Article  CAS  Google Scholar 

  • Soares C.R.F.S., Grazziotti P.H., Siqueira J.O. et al.: [Zinc toxicity on growth and nutrition of Eucalyptus maculata and Eucalyptus urophylla in nutrient solution.]. — Pesqui. Agropecu. Bras. 36: 339–348, 2001. [In Portuguese]

    Article  Google Scholar 

  • Steel R.G.D., Torrie J.H., Dickey D.A.: Principles and Procedures of Statistics: a Biometrical Approach. Pp. 666. Academic Internet Publishers, Moorpark 2006.

    Google Scholar 

  • Sterckeman T., Redjala T., Morel J.L.: Influence of exposure solution composition and of plant cadmium content on root cadmium short-term uptake. — Environ. Exp. Bot. 74:131–139, 2011.

    Article  CAS  Google Scholar 

  • Su Y., Liu J., Lu Z. et al.: Effects of iron deficiency on subcellular distribution and chemical forms of cadmium in peanut roots in relation to its translocation. — Environ. Exp. Bot. 97: 40–48, 2014.

    Article  CAS  Google Scholar 

  • Sun H., Li Y., Ji Y. et al.: Environmental contamination and health hazard of lead and cadmium around Chatian mercury mining deposit in western Hunan Province, China. — T. Nonferr. Metal Soc. 20: 308–314, 2010.

    Article  CAS  Google Scholar 

  • Valentovičová K., Halušková L., Huttová J. et al.: Effect of cadmium on diaphorase activity and nitric oxide production in barley root tips. — J. Plant Physiol. 167: 10–14, 2010.

    Article  PubMed  Google Scholar 

  • Velikova V., Yordanov I., Edreva A.: Oxidative stress and some antioxidant system in acid rain treated bean plants: protective role of exogenous polyamines. — Plant Sci. 151: 59–66, 2000.

    Article  CAS  Google Scholar 

  • Wan G., Najeeb U., Jilani G. et al.: Calcium invigorates the cadmium-stressed Brassica napus L. plants by strengthening their photosynthetic system. — Environ. Sci. Pollut. R. 18: 1478–1486, 2011.

    Article  CAS  Google Scholar 

  • Wanat N., Austruy A., Joussein E. et al.: Potentials of Miscanthus × giganteus grown on highly contaminated Technosols. — J. Geochem. Explor. 126–127: 78–84, 2013.

    Article  Google Scholar 

  • Wang S., Zhang D., Pan X.: Effects of cadmium on the activities of photosystems of Chlorella pyrenoidosa and the protective role of cyclic electron flow. — Chemosphere 93: 230–237, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Wu J.W., Shi Y., Zhu Y.X. et al.: Mechanisms of enhanced heavy metal tolerance in plants by silicon: a review. — Pedosphere 23: 815–825, 2013.

    Article  CAS  Google Scholar 

  • Wu Q.S., Xia R.X., Zou Y.N.: Reactive oxygen metabolism in mycorrhizal and non-mycorrhizal citrus (Poncirus trifoliate) seedlings subjected to water stress. — J. Plant Physiol. 163: 1101–1110, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Xiang C., Werner B.L., Christensen E.M., Oliver D.J.: The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels. — Plant Physiol. 126: 564–574, 2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon J., Cao X., Zhou Q., Ma L.Q.: Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. — Sci. Total Environ. 368: 456–464, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Zhou C., Zhang K., Lin J. et al.: Physiological responses and tolerance mechanisms to cadmium in Conyza canadensis. — Int. J. Phytoremediat. 17: 280–289, 2015.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. S. Lobato.

Additional information

Acknowledgements: This research was financially supported from Fundação Amazônia de Amparo a Estudos e Pesquisa (FAPESPA/Brazil), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq/Brazil), and Universidade Federal Rural da Amazônia (UFRA/Brazil) to A.R. Fernandes and A.K.S. Lobato, while J.R.R. Silva was supported by graduate scholarship from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq/Brazil).(CNPq/Brazil).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, J.R.R., Fernandes, A.R., Silva Junior, M.L. et al. Tolerance mechanisms in Cassia alata exposed to cadmium toxicity – potential use for phytoremediation. Photosynthetica 56, 495–504 (2018). https://doi.org/10.1007/s11099-017-0698-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-017-0698-z

Additional key words

Navigation