Skip to main content
Log in

Photosynthetic pigments, ionic and antioxidative behaviour of hulled tetraploid wheat in response to NaCl

  • Original papers
  • Published:
Photosynthetica

Abstract

Salt stress causes extensive losses to agricultural crops, including wheat, throughout the world and has been the focus of wide research. Though, information is scarce on the potential of ancient wheat relatives in tackling this major limiting factor. Thus, six hulled tetraploid wheat genotypes (HW) were compared to a free-threshing durum wheat genotype (FTW) under different NaCl concentrations, ranging from 0 to 150 mM, at early growth stages in a sand culture experiment. Salt stress induced significant declines in the leaf chlorophyll (Chl) a, Chl b, total Chl, and carotentoid contents; the extent of the declines was greater in FTW compared to HW. Mean leaf proline (3.6-fold) and Na+ (1.58-fold) concentrations and Na+/K+ (2.48-fold) drastically increased with 150 mM of NaCl; the magnitude of the increases was greater in HW compared to FTW. While the carotenoids concentration decreased with progressive salinity both in HW and FTW, the activities of antioxidant enzymes, i.e., catalase, ascorbate peroxidase, and peroxidase were reduced in FTW, but remained unchanged in HW. The above responses to 150 mM NaCl were associated with a significant decrease in shoot dry mass of FTW and lack of significant changes in that of HW. Findings of the present study could help pave the way for further studies on physiological and molecular mechanisms of salt tolerance in these durum wheat relatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

APX:

ascorbate peroxidase

Car:

carotenoids

CAT:

catalase

Chl:

chlorophyll

Chltot :

total chlorophyll

C0:

control

DTT:

α-dithiothreitol

FM:

fresh mass

FTW:

free-threshing durum wheat genotype

HW:

hulled tetraploid wheat group of genotypes

LSD:

least significant difference

POX:

peroxidase

PVP:

polyvinyl pyrrolidone

ROS:

reactive oxygen species

RDM:

root dry mass

RH:

relative humidity

S50:

50 mM NaCl

S100:

100 mM NaCl

S150:

150 mM NaCl

SDM:

shoot dry mass

SOD:

superoxide dismutase

ST:

salinity tolerance

References

  • Abogadallah G.M.: Antioxidative defense under salt stress.–Plant Signal. Behav. 5: 369–374, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashraf M., Harris P.J.C.: Potential biochemical indicators of salinity tolerance in plants.–Plant Sci. 166: 3–16, 2004.

    Article  CAS  Google Scholar 

  • Ashraf M., Harris P. J. C.: Photosynthesis under stressful environments: An overview.–Photosynthetica 51: 163–190, 2013.

    Article  CAS  Google Scholar 

  • Ashraf M., McNeilly T.: Variability in salt tolerance of nine spring wheat cultivars.–J. Agron. Crop Sci. 160: 14–21, 1998.

    Article  Google Scholar 

  • Ashraf M., O’Leary J.W.: Responses of some newly developed salt-tolerant genotypes of spring wheat to salt stress. 1. Yield components and ion distribution.–J. Agron. Crop Sci. 176: 91–101, 1996.

    Article  Google Scholar 

  • Azizpour K., Shakiba M.R., Khos Kholgh Sima N.A. et al.: Physiological responses of spring durum wheat genotypes to salinity.–J. Plant Nutr. 33: 859–873, 2010.

    Article  CAS  Google Scholar 

  • Bates L.S.: Rapid determination of free proline for water stress studies.–Plant Soil 39: 205–207, 1973.

    Article  CAS  Google Scholar 

  • Bhandal I.S., Malik C.P.: Potassium estimation, uptake, and its role in the physiology and metabolism of flowering plants.–Int. Rev. Cytol. 110: 205–254, 1988.

    Article  CAS  Google Scholar 

  • Bradford M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding.–Anal. Biochem. 72: 248–254, 1976.

    Article  CAS  PubMed  Google Scholar 

  • Chance B., Maehly A.C.: Assay of catalase and peroxidase.–Methods Enzymol. 2: 764–775, 1955.

    Article  Google Scholar 

  • Chen H., An R., Tang J.H. et al.: Over-expression of a vacuolar Na+/H+ antiporter gene improves salt tolerance in an upland rice.–Mol. Breeding 19: 215–225, 2007.

    Article  CAS  Google Scholar 

  • Debez A., Ben Hamed K., Grignon C. et al.: Salinity effects on germination, growth, and seed production of the halophyte Cakile maritima.–Plant Soil 262: 179–189, 2004.

    Article  CAS  Google Scholar 

  • Demiral T., Türkan I.: Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance.–Environ. Exp. Bot. 53: 247–257, 2005.

    Article  CAS  Google Scholar 

  • Dvorák J., Noaman M., Goyal S. et al.: Enhancement of salttolerance of Triticum turgidum L. by the Knal locus transferred from the Triticum aestivum L.–Theor. Appl. Genet. 87: 872–877, 1994.

    Article  PubMed  Google Scholar 

  • Ehsanzadeh P., Sabagh Nekoonam M., Nouri Azhar J. et al.: Growth, chlorophyll, and cation concentration of tetraploid wheat on a solution high in sodium chloride salt: hulled versus free-threshing genotypes.–J. Plant Nutr. 32: 58–70, 2009.

    Article  CAS  Google Scholar 

  • Flowers T.J., Gaur P.M., Gowda C.L.L. et al.: Salt sensitivity in chickpea.–Plant Cell Environ. 33: 490–509, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Fougere F., Rudulier D.L., Streeter J.G.: Effects of salt stress on amino acid, and carbohydrate composition of roots, bacteroids and cytosol of alfalfa (Medicago sativa L.).–Plant Physiol. 96: 1228–1236, 1991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Genc Y., McDonald G.K., Tester M.: Reassessment of tissue Na+ concentration as a criterion for salinity tolerance in bread wheat.–Plant Cell Environ. 30: 1486–1498, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Gilbert G.A., Gadush M.V., Wilson C. et al.: Amino acid accumulation in sink and source tissues of Coleus blumei Benth. During salinity stress.–J. Exp. Bot. 49: 107–114, 1998.

    Article  CAS  Google Scholar 

  • Gill S.S., Tuteja N.: Reactive oxygen species and antioxidant machinery in abiotic stress resistance in crop plants.–Plant Physiol. Biochem. 48: 909–930, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Gorham J., Hardy C., Wyn Jones R.G. et al.: Chromosomal location of a K/Na discrimination character in the D genome of wheat.–Theor. Appl. Genet. 74: 584–588, 1987.

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B., Gutteridge J.M.C.: Free Radicals in Biology and Medicine. Pp. 851. Oxford University Press, London 1985.

    Google Scholar 

  • Herzog V., Fahimi H.: Determination of the activity of peroxidase.–Anal. Biochem. 55: 554–562, 1973.

    Article  CAS  PubMed  Google Scholar 

  • Hoagland D.R., Arnon D.I.: The water culture method for growing plants without soil.–Calif. Agric. Exp. Stat. 347: 1–32, 1950.

    Google Scholar 

  • Huang S., Spielmeyer W., Lagudah E.S. et al.: A sodium transporter (HKT7) is a candidate for Nax1, a gene for salt tolerance in durum wheat.–Plant Physiol. 142: 1718–1727, 2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiani-Pouya A., Rasouli F.: The potential of leaf chlorophyll content to screen bread-wheat genotypes in saline condition.–Photosynthetica 52: 288–300, 2014.

    Article  CAS  Google Scholar 

  • Lichtenthaler H.K., Wellburn, W.R.: Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents.–Biochem. Soc. T. 11: 591–592, 1994.

    Article  Google Scholar 

  • Miller D.M.: Errors in the measurement of root pressure and exudation volume flow-rate caused by damage during the transfer of unsupported roots between solutions.–Plant Physiol. 85: 164–166, 1987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittler R.: Oxidative stress, antioxidants and stress tolerance.–Trends Plant Sci. 7: 405–410, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Munns R.: Comparative physiology of salt and water stress.–Plant Cell Environ. 25: 239–250, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Munns R., James R.A.: Screening methods for salinity tolerance: a case study with tetraploid wheat.–Plant Soil 253: 201–218, 2003.

    Article  CAS  Google Scholar 

  • Munns R., Tester M.: Mechanisms of salinity tolerance.–Annu. Rev. Plant Biol. 59: 651–681, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Nabti E., Mohamed Sahnoune M., Ghoul M. et al.: Restoration of growth of durum wheat (Triticum durum var. waha) under saline conditions due to inoculation with the rhizosphere bacterium Azospirillum brasilense NH and extracts of the marine alga Ulva lactuca.–J. Plant Growth Regul. 29: 6–22, 2010.

    Article  CAS  Google Scholar 

  • Nakano Y., Asada K.: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts.–Plant Cell Physiol. 22: 867–880, 1981.

    CAS  Google Scholar 

  • Nesbitt M., Sammuel D.: From staple crop to extinction? The archaeology and history of the hulled wheats.–In: Padulosi S., Hammer K., Heller J. (ed.): Proceedings of the First International Workshop on Hulled Wheats. Pp. 41–100. International Plant Genetic Resources Institute, Rome 1995.

    Google Scholar 

  • Nevo E.: Genomic diversity in nature and domestication.–In: Henry R. (ed.): Diversity and Evolution of Plants. Genotypic and Phenotypic Variation in Higher Plants. Pp. 287–316. CAB Publ., CAB International, Wallingford 2004.

    Google Scholar 

  • Nevo E., Chen G.: Drought and salt tolerances in wild relatives for wheat and barley improvement.–Plant Cell Environ. 33: 670–685, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Noctor G., Gomez L., Vanacker H. et al.: Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling.–J. Exp. Bot. 53: 1283–1304, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Parvaiz A., Satyawati S.: Salt stress and phyto-biochemical responses of plants–a review.–Plant Soil Environ. 54: 89–99, 2008.

    CAS  Google Scholar 

  • Poustini K., Siosemardeh A.: Ion distribution in wheat cultivars in response to salinity stress.–Field Crop. Res. 85: 125–133, 2004.

    Article  Google Scholar 

  • Reddy A.R., Chaitanya K.V., Vivekanandan M.: Droughtinduced responses of photosynthesis and antioxidant metabolism in higher plants.–J. Plant Physiol. 161: 1189–1202, 2004.

    Article  CAS  Google Scholar 

  • Sairam R.K., Rao K.V., Srivastava G.C.: Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration.–Plant Sci. 163: 1037–1046, 2002.

    Article  CAS  Google Scholar 

  • Schachtman D.P., Munns R., Whitecross M.I.: Variation of sodium exclusion and salt tolerance in Triticum tauschii.–Crop Sci. 31: 992–997, 1991.

    Article  CAS  Google Scholar 

  • Schmid J.E., Rimle R., Beglinger C.H. et al.: Agronomic and genetic studies with spelt and wheat x spelt crosses.–In: Stolen O., Bruhn K., Pithan K., Hill J. (ed.): Small Grain Cereals and Pseudo-cereals Workshop, Copenhagen. Pp. 9–18. European Commission, Copenhagen 1996.

    Google Scholar 

  • Singh A.K., Dubey R.S.: Changes in chlorophyll a and b contents and activities of photosystems I and II in rice seedlings induced by NaCl.–Photosynthetica 31: 489–499, 1995.

    CAS  Google Scholar 

  • Sudhir P., Murthy S.D.S: Effect of salt stress on basic processes of photosynthesis.–Photosynthetica 42: 481–486, 2004.

    Article  CAS  Google Scholar 

  • Tuna A.L., Kaya C., Dikilitas M., Higgs D.: The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants.–Environ. Exp. Bot. 62: 1–9, 2008.

    Article  CAS  Google Scholar 

  • Tunc-Ozdemir M., Miller G., Song L. et al.: Thiamin confers enhanced tolerance to oxidative stress in Arabidopsis.–Plant Physiol. 151: 421–432, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Widodo Patterson J.H., Newbigin E. et al.: Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance.–J. Exp. Bot. 60: 4089–4103, 2009.

    Article  PubMed  Google Scholar 

  • Winicov I.: New molecular approaches to improving salt tolerance in crop plants.–Ann. Bot.-London 82: 703–710, 1998.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ehsanzadeh.

Additional information

Acknowledgments: The authors are indebted to the Isfahan University of Technology for the financial aid given for this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabatabaei, S., Ehsanzadeh, P. Photosynthetic pigments, ionic and antioxidative behaviour of hulled tetraploid wheat in response to NaCl. Photosynthetica 54, 340–350 (2016). https://doi.org/10.1007/s11099-016-0083-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-016-0083-3

Additional key words

Navigation