Skip to main content
Log in

Ecophysiological responses of Eichhornia crassipes (Mart.) Solms to As5+ under different stress conditions

  • Original papers
  • Published:
Photosynthetica

Abstract

Arsenic is a critical contaminant that is released into the environment through geochemical processes and anthropic actions. Two independent hydroponic experiments were performed to evaluate the ecophysiological responses of water hyacinth [Eichhornia crassipes (Mart.) Solms] to As under various stress conditions. In experiment 1, water hyacinth was exposed to As5+ at concentrations of 0, 0.2, 2.0, and 20 mg L−1 for 0, 2, and 4 d; in experiment 2, water hyacinth was exposed at concentrations of 0, 0.025, 0.05, and 0.1 mg L−1 for 0, 10, and 20 d. In both experiments, As accumulation in plant tissue was proportional to its increase in the nutrient solution; As concentrations were higher in roots than in shoots. Detrimental effects of As on gas exchange were observed and were more pronounced in experiment 1. In experiment 1, at the beginning on the second day of exposure, significant decreases of maximum photochemical efficiency of PSII (Fv/Fm), variable chlorophyll fluorescence (Fv/F0), and photosynthetic pigment contents were observed in plants exposed to 2.0 and 20 mg(As5+) L−1. It indicated that damage to the photosynthetic apparatus had occurred. No changes in Fv/Fm, Fv/F0, and contents of photosynthetic pigments were observed in the plants grown in the presence of 0.2 mg(As5+) L−1 (in experiment 1) or after any of the treatments in experiment 2, indicating plant tolerance. Elevated nonphotochemical quenching was observed in experiment 2 after 20 d of exposure to As; it was as a part of protection mechanisms of the photosynthetic apparatus in these plants. The results obtained here indicate that the use of water hyacinth for As5+ removal from highly impacted environments is limited but that it is effective in remediating sites with a low contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Car:

carotenoids

Chl:

chlorophyll

C i :

intercellular CO2 concentration

DMSO:

dimethylsulfoxide

F0 :

minimal fluorescence yield of the dark-adapted state

Fm :

maximal fluorescence yield of the dark-adapted state

Fv :

variable fluorescence

Fv/F0 :

variable chlorophyll fluorescence

Fv/Fm :

maximum photochemical efficiency of PSII

g s :

stomatal conductance

NPQ:

nonphotochemical quenching

P N :

net photosynthetic rate

qP :

photochemical quenching

References

  • Azcue J.M., Nriagu J.O.: Impact of abandoned mine tailings on the arsenic concentrations in Moira Lake, Ontario. — J. Geochem. Explor. 52: 81–89, 1995.

    Article  CAS  Google Scholar 

  • Björkman O., Demmig B.: Photon yield of oxygen evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origin. — Planta 170: 489–504, 1987.

    Article  PubMed  Google Scholar 

  • Bolhar-Nordenkampf H.R., Long S.P., Baker N.R.: Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field: a review of current instrumentation. — Func. Ecol. 3: 497–514, 1989.

    Article  Google Scholar 

  • Borba R.P., Figueiredo B.R., Rawlins B., Matschullat J.: Geochemical distribution of arsenic in waters, sediments and weathered gold mineralized rocks from Iron Quadrangle, Brazil. — Environ. Geol. 44: 39–52, 2003.

    CAS  Google Scholar 

  • Borba R.P., Figueiredo B.R., Cavalcanti J.A.: [Arsenic in groundwater in Ouro Preto and Mariana, Iron Quadrangle (MG).] — Geociências 57: 45–51, 2004. [In Portuguese]

    Google Scholar 

  • Burns J., Fraser P.D., Bramley P.M.: Identification and quantification of carotenoids, tocopherols and chlorophyll in commonly consumed fruits and vegetables. — Phytochemistry 62: 939–947, 2003.

    Article  CAS  PubMed  Google Scholar 

  • CONAMA nº 357. March 17. Published in DOU nº 53, march 18. Section 1, 58–63, Ministério do Meio Ambiente, 2005. [In Portuguese]

  • Demmig-Adams B., Adams W.W.: The role of xanthophyll cycle carotenoids in the protection of photosynthesis. — Trend. Plant Sci. 1: 21–26, 1996.

    Article  Google Scholar 

  • Farnese F.S., Oliveira J.A., Gusman G.S. et al.: Effects of adding nitroprusside on arsenic stressed response of Pistia stratiotes L. under hydroponic conditions. — Int. J. Phyto-remediat. 16: 123–137, 2014.

    Article  CAS  Google Scholar 

  • Garg N., Singla P.: Arsenic toxicity in crop plants: physiological effects and tolerance mechanisms. — Environ. Chem. Lett. 9: 303–321, 2011.

    Article  CAS  Google Scholar 

  • Genty B., Briantais J.M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. — Biochim. Biophys. Acta 990: 87–92, 1989.

    Article  CAS  Google Scholar 

  • Giri A.K., Patel R.K.: Phytoaccumulation potential and toxicity of arsenic ions by Eichhornia crassipes in hydroponic system. — J. Bioremed. Biodegrad. 3: 2–6, 2012.

    Article  Google Scholar 

  • Gonçalves J.A.C., Lena J.C., Paiva J.F. et al.: Arsenic in the groundwater of Ouro Preto (Brazil): its temporal behavior as influenced by the hydric regime and hydrogeology. — Environ. Geol. 53: 785–793, 2007.

    Article  Google Scholar 

  • Gusman G.S., Oliveira J.A., Farnese F.S. et al.: Arsenate and arsenite: the toxic effects on photosynthesis and growth of lettuce plants. — Acta Physiol. Plant. 35: 1201–1209, 2013.

    Article  CAS  Google Scholar 

  • He J., Lee S.K., Dodd I.C.: Limitations to photosynthesis of lettuce growth under tropical conditions: alleviation by rootzone cooling. — J. Exp. Bot. 52: 1323–1330, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Hoagland D.R., Arnon D.I.: The Water Culture Method for Growing Plants without Soil. Pp. 34. California Agriculture Station, Berkeley 1950.

    Google Scholar 

  • Iriel A., Dundas G., Cirelli A.F. et al.: Effect of arsenic on reflectance spectra and chlorophyll fluorescence of aquatic plants. — Chemosphere 119: 697–703, 2015.

    Article  CAS  PubMed  Google Scholar 

  • Jain C.K., Ali I.: Arsenic: occurrence, toxicity and speciation techniques. — Water Res. 34: 4304–4312, 2000.

    Article  CAS  Google Scholar 

  • Jana S.: Accumulation of Hg and Cr by three aquatic species and subsequent changes in several physiological and bio-chemical plant parameters. — Water Air Soil Poll. 38: 105–109, 1988.

    CAS  Google Scholar 

  • Jiang Q.Q., Singh B.R.: Effect of different forms and sources of arsenic on crop yield and arsenic concentration. — Water Air Soil Poll. 74: 321–343, 1994.

    CAS  Google Scholar 

  • Karimi N., Shayesteh L.S., Ghasmpour H. et al.: Effects of arsenic on growth, photosynthetic activity, and accumulation in two new hyperaccumulating populations of Isatis cappadocica Desv. — J. Plant Growth Regul. 32: 823–830, 2013.

    Article  CAS  Google Scholar 

  • Krause G.H., Weis E.: Chlorophyll fluorescence and photosynthesis: the basics. — Annu. Rev. Plant Physiol. Plant Mol. Biol. 42: 313–349, 1991.

    Article  CAS  Google Scholar 

  • Lage-Pinto F., Oliveira J.G., Cunha M.D. et al.: Chlorophyll a fluorescence and ultrastructural changes in chloroplast of water hyacinth as indicators of environmental stress. — Environ. Exp. Bot. 64: 307–313, 2008.

    Article  CAS  Google Scholar 

  • Lichtenthaler H.K., Kuhn G., Prenzel U. et al.: Chlorophyll-protein levels and degree of thylakoid stacking in radish chloroplasts from high-light, low-light and bentazon-treated plants. — Physiol. Plantarum 56: 183–188, 2006.

    Article  Google Scholar 

  • Li X.P., Björkman O., Shih C. et al.: A pigment-binding protein essential for regulation of photosynthetic light harvesting. — Nature 403: 391–395, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Li M., Zhang J., Ling T. et al.: Ecophysiological responses of Jussiaea rapens to cadmium exposure. — Aquat. Bot. 88: 347–352, 2008.

    Article  CAS  Google Scholar 

  • Ma L.Q., Komar K.M., Tu C. et al.: A fern that hyperaccumulates arsenic. — Nature 409: 579–579, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Maleva M.G., Nekrasova G.F., Borisova G.G. et al.: Effect of heavy metals on photosynthetic apparatus and antioxidant status of Elodea. — Russ. J. Plant Physl+ 59: 190–197, 2012.

    Article  CAS  Google Scholar 

  • Martínez-Sánchez M.J., Martínez-López S., García-Lorenzo M.L. et al.: Evaluation of arsenic in soils and plant uptake using various chemical extraction methods in soils affected by old mining activities. — Geoderma 160: 535–541, 2011.

    Article  Google Scholar 

  • Mathews S., Ma L.Q., Rathinasabapathi B. et al.: Arsenic transformation in the growth media and biomass of hyperaccumulator Pteris vittata L. — Bioresource Technol. 101: 8024–8030, 2010.

    Article  CAS  Google Scholar 

  • Meharg A.A., Hartley-Whitaker J.: Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. — New Phytol. 154: 29–43, 2002.

    Article  CAS  Google Scholar 

  • Oliveira J.G., Alves P.L.C.A., Magalhães A.C.N.: The effect of chilling on the photosynthetic activity in coffee (Coffea arabica L.) seedlings. The protective action of chloroplastid pigments. — Braz. J. Plant Physiol. 14: 95–104, 2002.

    Google Scholar 

  • Paiva L.B., Oliveira J.G., Azevedo R.A. et al.: Ecophysiological responses of water hyacinth exposed to Cr3+ and Cr6+. — Environ. Exp. Bot. 65: 403–409, 2009.

    Article  CAS  Google Scholar 

  • Päivöke A.E.A., Simola L.K.: Arsenate toxicity to Pisum sativum: mineral nutrients, chlorophyll content and phytase activity. — Ecotox. Environ. Safe. 49: 111–121, 2001.

    Article  Google Scholar 

  • Pereira F.J., Castro E.M., Oliveira C. et al.: [Anatomical and physiological mechanisms of water hyacinth plants to arsenic contamination tolerance.] — Planta Daninha 29: 259–267, 2011. [In Portuguese]

    Article  Google Scholar 

  • Rabelo G.R., Vitória A.P., da Silva M.V.A. et al.: Structural and ecophysiological adaptations to forest gaps. — Trees-Struct. Funct. 27: 259–272, 2013.

    Article  Google Scholar 

  • Rezende P.S., Moura P.A.S., Durão W.A.J. et al.: Arsenic and mercury mobility in Brazilian sediments from the São Francisco River Basin. — J. Braz. Chem. Soc. 22: 910–918, 2011.

    Article  CAS  Google Scholar 

  • Robinson B., Duwing C., Bolan N. et al.: Uptake of arsenic by New Zealand watercress (Lepidium sativum). — Sci. Total Environ. 301: 67–73, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Rohácek K.: Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning and mutual relationships. — Photosynthetica 40: 13–29, 2002.

    Article  Google Scholar 

  • Salt D.E., Smith R.D., Raskin I.: Phytoremediation. — Annu. Rev. Plant Phys. 49: 643–668, 1998.

    Article  CAS  Google Scholar 

  • Schmöger M., Oven M., Grill E.: Detoxification of arsenic by phytochelatins in plants. — Plant Physiol. 122: 793–802, 2000.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schützendübel A., Polle A.: Plant responses to abiotic stress: heavy metal-induced oxidative stress and protection by mycorrhization. — J. Exp. Bot. 53: 1351–1365, 2002.

    Article  PubMed  Google Scholar 

  • Singh N.K., Pandey G.C., Rai U.N. et al.: Metal accumulation and ecophysiological effects of distillery effluent on Potamogeton pectinatus L. — Bull. Environ. Contam. Toxicol. 74: 857–863, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Singh N., Ma L.Q., Srivastava M. et al.: Metabolic adaptations to arsenic-induced oxidative stress in Pteris vittata L. and Pteris ensiformis L. — Plant Sci. 170: 274–282, 2006.

    Article  CAS  Google Scholar 

  • Singh N., Ma L.Q., Va J.C. et al.: Effects of arsenic on nitrate metabolism in arsenic hyperaccumulating and non-hyperaccumulating ferns. — Environ. Pollut. 157: 2300–2305, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Smart R.M., Barko J.W.: Laboratory culture of submersed freshwater macrophytes on natural sediments. — Aquat. Bot. 21: 251–263, 1985.

    Article  Google Scholar 

  • Smedley P.L., Kinniburgh D.G.: Sources and Behavior of Arsenic in Natural Water. United Nations Synthesis Report on Arsenic in Drinking Water. Pp. 61. WHO, Geneva 2001.

    Google Scholar 

  • Soltan M.E., Rashed M.N.: Laboratory study on the survival of water hyacinth under several conditions of heavy metal concentrations. — Adv. Environ. Res. 7: 321–334, 2003.

    Article  CAS  Google Scholar 

  • Souza V.L., Silva D.C., Santana K.B. et al.: Effects of cadmium on the anatomy and photosynthesis of two aquatic macrophytes. — Acta Bot. Bras. 23: 342–354, 2009.

    Google Scholar 

  • Srivastava S., Mishra S., Tripathi R.D. et al.: Phytochelatins and antioxidant systems respond differentially during arsenite and arsenate stress in Hydrilla verticillata (L.f.) Royle. — Environ. Sci. Technol. 41: 2930–2936, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Stoeva N., Bineva T.: Oxidative changes and photosynthesis in oat plants grown in As-contaminated soil. — Bulgarian J. Agric. Sci. 29: 87–95, 2003.

    Google Scholar 

  • Stoeva N., Berova M., Zlatev Z.: Physiological response of maize to arsenic contamination. — Biol. Plantarum 47: 449–452, 2003.

    Article  CAS  Google Scholar 

  • Stoeva N., Berova M., Zlatev Z.: Effect of arsenic on some physiological parameters in bean plants. — Biol. Plantarum 49: 293–296, 2005.

    Article  CAS  Google Scholar 

  • van Kooten O., Snel J.F.H.: The use of chlorophyll fluorescence nomenclature in plant stress physiology. — Photosynth. Res. 25: 147–150, 1990.

    Article  PubMed  Google Scholar 

  • Verkley J.A.C., Schat H.: Mechanisms of metal tolerance in higher plants. — In: Shaw A.J. (ed.): Heavy Metal Tolerance in Plants: Evolutionary Aspects. Pp. 179–193. CRC Press, New York 1992.

    Google Scholar 

  • Vieira T.O., Degli-Espositi M.S.O., Souza G.M. et al.: Photoacclimation capacity in seedling and sapling of Siparuna guianensis (Siparunaeae): Response to irradiance gradient in tropical forest. — Photosynthetica 53: 11–22, 2015.

    Article  CAS  Google Scholar 

  • Vitória A.P., Lage-Pinto F., Campaneli L.B. et al.: Ecophysiological adaptation and metal accumulation in water hyacinth from two tropical rivers. — Braz. J. Plant. Physiol. 22: 49–59, 2010.

    Article  Google Scholar 

  • Vitória A.P., Lage-Pinto F., Campaneli L.B. et al.: Structural and ecophysiological alterations of the water hyacinth [Eichhornia crassipes (Mart.) Solms] due to anthropogenic stress in Brazilian rivers. — Braz. Arch. Biol. Technol. 54: 1059–1068, 2011.

    Article  Google Scholar 

  • Vitória, A.P., Santos, J.L.S., Salomão, M.S.M. B. et al.: Influence of ecologic type, seasonality, and origin of macrophyte in metal accumulation, anatomy and ecophysiology of Eichhornia crassipes and Eichhornia azurea. — Aquat. Bot. 125: 9–16, 2015.

    Article  Google Scholar 

  • Xue P.Y., Yan C.Z.: Arsenic accumulation and translocation in the submerged macrophyte Hydrilla verticillata (L.f.) Royle. — Chemosphere 85: 1176–1181, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Wellburn A.R.: The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. — J. Plant Physiol. 144: 307–313, 1994.

    Article  CAS  Google Scholar 

  • Zhao F.J., Ma J.F., Meharq A.A. et al.: Arsenic uptake and metabolism in plants. — New Phytol. 181: 777–794, 2009.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. C. Meneguelli-Souza.

Additional information

Acknowledgements: The authors wish to thank the Coordination for the Improvement of Higher Education Personnel (CAPES), Research Foundation for the State of the Rio de Janeiro (FAPERJ), and the State University of the North Fluminense Darcy Ribeiro for financial support.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meneguelli-Souza, A.C., Vitória, A.P., Vieira, T.O. et al. Ecophysiological responses of Eichhornia crassipes (Mart.) Solms to As5+ under different stress conditions. Photosynthetica 54, 243–250 (2016). https://doi.org/10.1007/s11099-015-0174-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-015-0174-6

Additional key words

Navigation