Skip to main content

Advertisement

Log in

Effect of drought stress on the photosynthesis of Acacia tortilis subsp. raddiana at the young seedling stage

  • Original Papers
  • Published:
Photosynthetica

Abstract

Water stress usually impairs photosynthesis and plant growth. Acacia tortilis subsp. raddiana is well adapted to dry environments. The aim of the present study was to determine the impact of a progressive decrease in soil water content on photosynthetic-related parameters at the young seedling stage. Drought-induced plant responses occurred according to two types of kinetics. Water potential, stomatal conductance, and transpiration rates were rapidly affected by a decrease in soil water content, while chlorophyll fluorescence-related parameters and chlorophyll concentrations decreased only when soil water content was lower than 40%. The maximal efficiency of PSII photochemistry in the dark-adapted state remained unaffected by the treatment, whatever the stress duration. A. raddiana accumulated high concentrations of soluble sugars in relation to a stress-induced early stimulation of sucrose-phosphate synthase activity, while stimulation of invertase and sucrose synthase led to fructose accumulation only at the end of the stress period. We suggested that sugar accumulation may be involved in osmotic adjustment and protection of stressed tissues. A. raddiana was thus able to protect its photosynthetic machinery under drought conditions and may be considered as a promising species for revegetation of dry areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Chl:

chlorophyll

DM:

dry mass

E :

instantaneous transpiration

ED:

density of epidermal pavement cells

ETR:

electron transfer rate

F0 :

the minimal fluorescence in the dark-adapted state

Fm :

the maximal fluorescence in the dark-adapted state

FM:

fresh mass

g s :

stomatal conductance

LA:

leaf area

NPQ:

nonphotochemical quenching

P N :

net photosynthesis

qP :

photochemical quenching

RWC:

relative water content

SD:

stomatal density

SI:

stomatal index

SLA:

specific leaf area

SPS:

sucrose-phosphate-synthase

SuSy:

sucrose synthase

SWC:

soil water content

WUE:

water-use efficiency

ΨW :

shoot water potential

ΨS :

shoot osmotic potential

ΦPSII :

actual PSII efficiency

References

  • Ait Said S., Torre F., Derridi A. et al.: Gender, Mediterranean drought, and seasonality: photosystem II photochemistry in Pistacia lentiscus. — Photosynthetica 51: 552–564, 2013.

    Article  CAS  Google Scholar 

  • Akinnifesi F.K., Rowe E.C., Livesley S.J. et al.: Tree root architecture. — In: Van Noordwijk M., Cadisch G., Ong C.K. (ed.): Below-ground Interactions in Tropical Agroecosystems. Concept and Models with Multiple Plant Components. Pp. 61–81. CABI Publishing, London 2004.

    Chapter  Google Scholar 

  • Andersen G.L., Krzywinski K.: Longevity and growth of Acacia tortilis; insights from 14C content and anatomy of wood. — BMC Ecology 7: doi: 10.1186/1472-6785-7-4, 2007.

  • Barbieri G., Valone S., Orsini F. et al.: Stomatal density and metabolic determinants mediate salt stress adaptation and water use efficiency in basil (Ocimum basilicum L.). — J. Plant Physiol. 169: 1737–1746, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Barrs H.D., Weatherley P.E.: A re-examination of the relative turgidity technique for estimating water deficits in leaves — Aust. J. Biol. Sci. 24: 519–570, 1962.

    Google Scholar 

  • Bensaïd S.: [The genus Acacia Miller.] — Ann. Inst. Natl. Agron. 21: 547–550, 1988. [In French]

    Google Scholar 

  • Bensaïd S.: [Germination under laboratory and natural environment conditions and growth in minirhizotron of Acacia raddiana Savi.] — In: Riedaker A, Dreyer E. (ed.): Tree and Shrub Physiology in Arid and Semi-arid Zones. Pp. 405–412. John Libbey Eurotext, Paris 1991. [In French]

    Google Scholar 

  • Bensaid S., Ait Mohand L., Echaib B.: Spatiotemporal evolution of Acacia tortilis (Forssk.) Hayne raddiana (Savi) Brenan populations in Ougarta Mountains (North Sahara). — Sécheresse 7: 173–178, 1996. [In French]

    Google Scholar 

  • Bradford M.M.: A rapid and sensitive method for determining microgram quantities of protein using the principle of proteindye binding. — Anal. Biochem. 72: 248–254, 1976.

    Article  CAS  PubMed  Google Scholar 

  • Chen W., Feng W., Guo D. et al.: Comparative effects of osmotic-, salt- and alkali stress on growth, photosynthesis and osmotic adjustment of cotton plants. — Photosynthetica 49: 417–425, 2011.

    Article  CAS  Google Scholar 

  • Delpérée C., Kinet J.M., Lutts S.: Low irradiance modifies the effect of water stress on survival and growth-related parameters during the early developmental stages of buckwheat (Fagopyrum esculentum). — Physiol. Plantarum 119: 211–220, 2003.

    Article  Google Scholar 

  • Flores J., Jurado E.: Are nurse-protégé interactions more common among plants from arid environments? — J. Veg. Sci. 14: 911–916, 2003.

    Article  Google Scholar 

  • Gimeno T.E., Sommerville K.E., Valladares F., Atkin O.K.: Homeostasis of respiration under drought and its important consequences for foliar carbon balance in a drier climate: insights from two contrasting Acacia species. — Funct. Plant Biol. 37: 323–333, 2010.

    Article  Google Scholar 

  • Grego S., Moscatelli M.C., Di Mattia E. et al.: [Rhizosphere biochemical activities of Acacia raddiana in North and South Sahara.] — In: Grouzis M., Le Floc’h, E. (ed.): A Tree in the Desert, Acacia raddiana. Pp. 231–247. Éditeurs Scientifiques IRD, Paris 2003. [In French]

    Google Scholar 

  • Grouzis M., Akpo E. L.: [Influence of Acacia raddiana on structure and functions of herbal zone in Senegalese Ferlo.] — In: Grouzis M., Le Floc’h, E. (ed.): A Tree in the Desert, Acacia raddiana. Pp. 249–262. Editeurs Scientifiques IRD, Paris 2003. [In French]

    Google Scholar 

  • Grouzis M., Le Floc’h, E.: A Tree in the Desert, Acacia raddiana. Éditeurs Scientifiques IRD, Paris 2003. [In French]

    Google Scholar 

  • Huber J.L., Hite D.R.C., Outlaw W.H., Huber S.C.: Inactivation of highly activated spinach leaf sucrose phosphate synthase by dephosphorylation. — Plant Physiol. 95: 291–297, 1991.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jaouadi W., Hamrouni L., Souayeh N., Khouja M.L.: [Study of the germination of Acacia tortilis under various abiotic constraints.] — Biotechnol. Agron. Soc. Environ. 14: 643–652, 2010. [In French]

    Google Scholar 

  • Kennenni L.: Geography and phytosociology of Acacia tortilis in the Sudan. — Afr. J. Ecol. 29: 1–10, 1991.

    Article  Google Scholar 

  • King S.P., Lunn J.E., Furbank R.T.: Carbohydrate content and enzyme metabolism in developing canola siliques. — Plant Physiol. 114: 153–160, 1997.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lassouane N., Aïd F., Lutts S.: Water stress impact on young seedling growth of Acacia arabica. — Acta Physiol. Plant. 35: 2157–2169, 2013.

    Article  CAS  Google Scholar 

  • Lichtenthaler H.K.: Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. — Method. Enzymol. 148: 350–382, 1987.

    CAS  Google Scholar 

  • Maxwell K., Johnson G.N.: Chlorophyll fluorescence — A practical guide — J. Exp. Bot. 51: 659–668, 2000.

    Article  CAS  PubMed  Google Scholar 

  • McCready R.M., Guggolz J., Silviera V., Owens H.S.: Determination of starch and amylose in vegetables. — Anal. Chem. 22: 1156–1158, 1950.

    Article  CAS  Google Scholar 

  • Munzbergová Z., Ward D.: Acacia trees as keystone species in Negev desert ecosystems. — J. Veg. Sci. 13: 227–236, 2002.

    Google Scholar 

  • Noumi Z., Abdallah F., Torre F. et al.: Impact of Acacia tortilis ssp. raddiana tree on wheat and barley yield in the south of Tunisia. — Acta Oecol. 37: 117–123, 2011.

    Article  Google Scholar 

  • Noureddine N.E., Amrani S., Aïd F.: [Symbiotic status and rhizobial strains associated to Acacia tortilis subsp. raddiana (Acacia raddiana s.s.), a Mimosoideae from desert regions of Algeria.] — Botany 88: 39–53, 2010. [In French]

    Article  CAS  Google Scholar 

  • Novriyanti E., Watanabe M., Makoto K. et al.: Photosynthetic nitrogen- and water-use efficiency of acacia and eucalypt seedlings as afforestation species. — Photosynthetica 50: 273–281, 2012.

    Article  CAS  Google Scholar 

  • Orsini F., Alnayef M., Bona S. et al.: Low stomatal density and reduced transpiration facilitate strawberry adaptation to salinity. — Environ. Exp. Bot. 81: 1–10, 2012.

    Article  CAS  Google Scholar 

  • Otieno D.O., Schmidt M.W.T., Adiku S., Tenhunen J.: Physiological and morphological responses to water stress in two Acacia species from contrasting habitats. — Tree Physiol. 25: 361–371, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Vandoorne B., Mathieu A.S., Van den Ende W. et al.: Water stress drastically reduces root growth and inulin yield in Cichorium intybus (var. sativum) independently of photosynthesis. — J. Exp. Bot. 63: 4359–4373, 2012.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vidanarachchi J.K., Iji P.A., Mikkelsen L.L. et al.: Isolation and characterization of water-soluble prebiotic compounds from Australian and New Zealand plants. — Carbohyd. Polym. 77: 670–676, 2009.

    Article  CAS  Google Scholar 

  • Warren C.R., Aranda I., Cano F.J.: Response to water stress of gas exchange and metabolites in Eucalyptus and Acacia spp. — Plant Cell Environ. 34: 1609–1629, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Xu S.M., Liu L.X., Woo K.C., Wang D.L.: Changes in photosynthesis, xanthophyll cycle, and sugar accumulation in two North Australia tropical species differing in leaf angles. — Photosynthetica 45: 348–354, 2007.

    Article  CAS  Google Scholar 

  • Xu Z., Zhou G.: Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. — J. Exp. Bot. 59: 3317–3325, 2008.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yemm E.W., Willis J.: The estimation of carbohydrates in plant extracts by anthrone. — J. Biochem. 57: 508–514, 1954.

    CAS  Google Scholar 

  • Yu H., Ong B.L.: The effect of phyllode temperature on gas exchange and chlorophyll fluorescence of Acacia mangium. — Photosynthetica 40: 635–639, 2002.

    Article  CAS  Google Scholar 

  • Zhu G.Y., Kinet J.M., Lutts S.: Characterization of rice (Oryza sativa L.) F3 populations selected for salt resistance. I. Physiological behavior during vegetative growth. — Euphytica 121: 251–263, 2001.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Lutts.

Additional information

Acknowledgements: This work was supported by Wallonie-Bruxelles International (Project de Coopération 2 — axe 4) and by the Fonds National de la Recherche Scientifique (No. 1.5117.11 and 1.5114.11). The authors are very grateful to Dr. Isabelle Lefèvre for valuable help in sugar analysis, to Béatrice Lambillotte, and Brigitte Van Pee for technical assistance, and to Université Catholique de Louvain (Secrétariat à la Cooperation) for the PhD grant of S. Kebbas. This manuscript is dedicated to the memory of Dr N.E. Noureddine (Université des Sciences et de la Technologie Houari Boumediene, Alger).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kebbas, S., Lutts, S. & Aid, F. Effect of drought stress on the photosynthesis of Acacia tortilis subsp. raddiana at the young seedling stage. Photosynthetica 53, 288–298 (2015). https://doi.org/10.1007/s11099-015-0113-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-015-0113-6

Additional key words

Navigation