Skip to main content
Log in

Influence of foliar-applied salicylic acid on growth, gas-exchange characteristics, and chlorophyll fluorescence in citrus under saline conditions

  • Original Papers
  • Published:
Photosynthetica

Abstract

Salicylic acid (SA) is a common, plant-produced signal molecule that is responsible for inducing tolerance to a number of biotic and abiotic stresses. Our experiment was therefore conducted to test whether the application of SA at various concentrations (0, 0.10, 0.50, and 1.00 mM) as a foliar spray would protect citrus seedlings (Valencia orange/Bakraii) subjected to salt stress (0, 25, 50, and 75 mM NaCl). Growth parameters, leaf chlorophyll (Chl) content, relative water content (RWC), maximal quantum yield of PSII photochemistry (Fv/Fm), and gas-exchange variables were negatively affected by salinity. In addition, leaf electrolyte leakage (EL) and proline content increased by salinity treatments. Application of SA increased net photosynthetic rate and proline content in salt stressed plants and may have contributed to the enhanced growth parameters. SA treated plants had greater Chl content and RWC compared with untreated plants when exposed to salt stress. Fv/Fm ratio and stomatal conductance were also significantly higher in SA treated plants under saline stress conditions. SA application reduced EL compared to untreated plants, indicating possible protection of integrity of the cellular membrane. It appeared that the best ameliorative remedies of SA were obtained when Valencia orange/Bakraii seedlings were sprayed by 0.50 and 1.00 mM solutions. Overall, the adverse effects of salt stress could be alleviated by exogenous application of SA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABA:

abscisic acid

ACC:

1-aminocyclopropane-1-carboxylic acid

C a :

atmospheric CO2 concentration

Chl:

chlorophyll

DM:

dry mass

EC:

electrical conductivity

EL:

electrolyte leakage

F0 :

minimal fluorescence yield at the dark-adapted state

FM:

fresh mass

Fm :

maximal fluorescence yield at the dark-adapted state

Fv/Fm :

maximum photochemical efficiency of PSII

g s :

stomatal conductance

IAA:

indole-3-acetic acid

LA:

total leaf area

LN:

number of leaves per plant

PC:

proline content

P N :

net photosynthetic rate

RH:

relative humidity

ROS:

reactive oxygen species

RWC:

relative water content

S:

salinity stress

SA:

salicylic acid

TDM:

total plant dry mass

TM:

turgid mass

VOB:

Valencia orange/Bakraii

References

  • Aftab T., Khan M.M.A., Idrees M. et al.: Salicylic acid acts as potent enhancer of growth, photosynthesis and artemisinin production in Artemisia annua L. — J. Crop Sci. Biotechnol. 13: 183–188, 2010.

    Article  Google Scholar 

  • Aftab T., Khan M.M.A., DaSilva J.A.T. et al.: Role of salicylic acid in promoting salt stress tolerance and enhanced artemisinin production in Artemisia annua L. — J. Plant Growth Regul. 30: 425–435, 2011.

    Article  CAS  Google Scholar 

  • Aldesuquy H.S., Mankarios A.T., Awad H.A.: Effect of some antitranspirants on growth, metabolism and productivity of saline-treated wheat plants. Induction of stomatal closure, inhibition of transpiration and improvement of leaf turgidity. — Acta Bot. Hung. 41: 1–10, 1998.

    CAS  Google Scholar 

  • Anjum M.A.: Effect of NaCl concentration in irrigation water on growth and polyamine metabolism in two citrus rootstocks with different levels of salinity tolerance. — Acta Physiol. Plant. 30: 43–52, 2007.

    Article  Google Scholar 

  • Baninasab B., Ghobadi C.: Influence of paclobutrazol and application methods on high-temperature stress injury in cucumber seedlings. — J. Plant Growth Regul. 30: 213–219, 2011.

    Article  CAS  Google Scholar 

  • Barkosky R.R., Einhellig F.A.: Effects of salicylic acid on plantwater relationships. — J. Chem. Ecol. 19: 237–247, 1993.

    Article  CAS  PubMed  Google Scholar 

  • Barrs H.D., Weatherley P.E.: A re-examination of the relative turgidity technique for estimating water deficits in leaves. — Aust. J. Biol. Sci. 15: 413–428, 1962.

    Google Scholar 

  • Bates L.S., Waldren R.P., Teare I.D.: Rapid determination of free proline for water-stress studies. — Plant Soil 39: 205–207, 1973.

    Article  CAS  Google Scholar 

  • Bethke P.C., Drew M.C.: Stomatal and non-stomatal components to inhibition of photosynthesis in leaves of Capsium annum during progressive exposure to NaCl salinity. — Plant Physiol. 99: 219–226, 1992.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Björkman O., Demming B.: Photon yield of oxygen evolution and chlorophyll fluorescence characteristics at 77_K among vascular plants of diverse origin. — Planta 170: 489–504, 1987.

    Article  PubMed  Google Scholar 

  • Can H.Z., Anac D., Kukul Y. et al.: Alleviation of salinity stress by using potassium fertilization in Satsuma mandarin trees budded on two different rootstocks. — Acta Hortic. 618: 275–280, 2003.

    Google Scholar 

  • Chen C.T., Li C.C., Kao C.H.: Senescence of rice leaves. Changes of chlorophyll, proteins and polyamine contents and ethylene production during senescence of a chlorophylldeficient mutant. — J. Plant Growth Regul. 10: 201–205, 1991.

    Article  CAS  Google Scholar 

  • Cooper W.C., Gorton B.S.: Toxicity and accumulation of chloride salts in citrus on various rootstocks. — P. Am. Soc. Hortic. Sci. 59: 143–146, 1952.

    CAS  Google Scholar 

  • Coronado M.A.G., Lopez C.T., Saavedra A.L.: Effects of salicylic acid on the growth of roots and shoots in soybean. — Plant Physiol. Bioch. 36: 563–565, 1998.

    Article  Google Scholar 

  • Delaney T.P., Uknes S., Vernooij B. et al.: A central role of salicylic acid in plant disease resistance. — Science 266: 1247–1250, 1994.

    Article  CAS  PubMed  Google Scholar 

  • Dhindsa R.S., Plumb-Dhindsa P., Thorpe T.A.: Leaf senescence correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. — J. Exp. Bot. 32: 93–101, 1981.

    Article  CAS  Google Scholar 

  • Downes B.P., Crowell D.N.: Cytokinin regulates the expression of a soybean β-expansin gene by a posttranscriptional mechanism. — Plant Mol. Biol. 37: 437–444, 1998.

    Article  CAS  PubMed  Google Scholar 

  • Fletcher R.A., Kallidumbil V., Steele P.: An improved bioassay for cytokinins using cucumber cotyledons. — Plant Physiol. 69: 675–677, 1982.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gadallah M.A.A.: Effects of indole-3-acetic acid and zinc on the growth, osmotic potential and soluble carbon and nitrogen components of soybean plants growing under water deficit. — J. Arid Environ. 44: 451–467, 2000.

    Article  Google Scholar 

  • García-Sánchez F., Carvajal M., Sanchez-Pina M.A. et al.: Salinity resistance of citrus seedlings in relation to hydraulic conductance, plasma membrane ATPase and anatomy of the roots. — J. Plant Physiol. 156: 724–730, 2000.

    Article  Google Scholar 

  • García-Sánchez F., Jifon J.L., Carvajal M. et al.: Gas exchange, chlorophylle and nutrient content in relation to Na and Cl accumulation in sunburst mandarin grafted on different rootstock. — Plant Sci. 162: 705–712, 2002.

    Article  Google Scholar 

  • Glass A.D.M., Dunlop J.: Influence of phenolic acids on ion uptake. IV. Depolarization of membrane potentials. — Plant Physiol. 54: 855–858, 1974.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • González L., González-Vilar M.: Determination of relative water content. — In: Reigosa M.J. (ed.): Handbook of Plant Ecophysiology Techniques. Pp. 207–212. Kluwer Academic Publishers, Dordrecht 2001.

    Google Scholar 

  • Grattan S.R., Grieve C.M.: Mineral element acquisition and growth response of plants grown in saline environment. — Agr. Ecosyst. Environ. 38: 275–300, 1992.

    Article  CAS  Google Scholar 

  • Grieve A.M., Prior L.D., Bevington K.B.: Long-term effects of saline irrigation water on growth, yield, and fruit quality of Valencia orange trees. — Aust. J. Agric. Res. 58: 342–348, 2007.

    Article  Google Scholar 

  • Gunes A., Inal A., Alpaslan M. et al.: Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. — J. Plant Physiol. 164: 728–736, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Hare P.D., Cress W.A.: Metabolic implications of stress-induced proline accumulation in plants. — Plant Growth Regul. 21: 79–102, 1997.

    Article  CAS  Google Scholar 

  • Hayat Q., Hayat S., Irfan M. et al.: Effect of exogenous salicylic acid under changing environment: A review. — Environ. Exp. Bot. 68: 14–25, 2010.

    Article  CAS  Google Scholar 

  • Horvath E., Szalai G., Janda T.: Induction of abiotic stress tolerance by salicylic acid signaling. — J. Plant Growth Regul. 26: 290–300, 2007.

    Article  CAS  Google Scholar 

  • Katerji N., Van Hoorn J.W., Hamdy A. et al.: Osmotic adjustment of sugarbeets in response to soil salinity and its influence on stomatal conductance, growth and yield. — Agric Water Manage. 34: 57–69, 1997.

    Article  Google Scholar 

  • Khan W., Prithviraj B., Smith D.L. et al.: Photosynthetic responses of corn and soybean to foliar application of salicylates. — J. Plant Physiol. 160: 485–492, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Khodary S.E.A.: Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in salt-stressed maize plants. — Int. J. Agric. Biol. 6: 5–8, 2004.

    CAS  Google Scholar 

  • Leslie C.A., Romani R.J.: Inhibition of ethylene biosynthesis by salicylic acid. — Plant Physiol. 88: 833–837, 1988.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lichtenthaler H.K.: Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. — In: Colowick S.P., Kaplan N.O. (ed.): Methods in Enzymology. Vol. 148. Pp. 350–382. Academic Press, San Diego 1987.

    Google Scholar 

  • Lutts S., Kinet J.M., Bouharmont J.: Changes in plant response to NaCl during development of rice (Oryza sativa L.) varieties differing in salinity resistance. — J. Exp. Bot. 46: 1843–1852, 1995.

    Article  CAS  Google Scholar 

  • McKersie B.D., Senaratna T., Walker M.A. et al.: Deterioration of membranes during aging in plants: evidence for free radical mediation. — In: Noodén L.D., Leopold A.C. (ed.): Senescence and Aging in Plants. Pp. 442–464. Academic Press, London 1988.

    Google Scholar 

  • Misra N., Gupta A.K.: Effect of salt stress on proline metabolism in two high yielding genotypes of green gram. — Plant Sci. 169: 331–339, 2005.

    Article  CAS  Google Scholar 

  • Nishihara E., Kondo K., Masud Parvez M. et al.: Role of 5-aminolevulinic acid (ALA) on active oxygen-scavenging system in NaCl-treated spinach (Spinacia oleracea). — Plant Physiol 160: 1085–1091, 2003.

    Article  CAS  Google Scholar 

  • Noreen Z., Ashraf M., Akram N.A.: Salt-induced regulation of some key antioxidant enzymes and physio-biochemical phenomena in five diverse cultivars of turnip (Brassica rapa L.). — J. Agron. Crop Sci. 196: 273–285, 2010.

    CAS  Google Scholar 

  • Poór P., Gémes K., Horváth F. et al.: Salicylic acid treatment via the rooting medium interferes with stomatal response, CO2 fixation rate and carbohydrate metabolism in tomato, and decreases harmful effects of subsequent salt stress. — Plant Biol. 13: 105–114, 2011.

    Article  PubMed  Google Scholar 

  • Rajasekaran L.R., Blake T.J.: New plant growth regulators protect photosynthesis and enhance growth under drought of jack pine seedlings. — J. Plant Growth Regul. 18: 175–181, 1999.

    Article  CAS  PubMed  Google Scholar 

  • Raskin I.: Role of salicylic acid in plants. — Annu. Rev. Plant Phys. 43: 439–463, 1992.

    Article  CAS  Google Scholar 

  • Sakhabutdinova A.R., Fatkhutdinova R., Bezrukova M.V. et al.: Salicylic acid prevents the damaging action of stress factors on wheat plants. — Bulg. J. Plant Physiol. SI: 314–319, 2003.

    Google Scholar 

  • Senaratna T., Merrit D., Dixon K. et al.: Benzoic acid may act as the functional group in salicylic acid and derivatives in the induction of multiple stress tolerance in plants. — Plant Growth Regul. 39: 77–81, 2003.

    Article  CAS  Google Scholar 

  • Senaratna T., Touchell D., Bunn E. et al.: Acetyl salicylic acid (asprin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. — Plant Growth Regul. 30: 157–161, 2000.

    Article  CAS  Google Scholar 

  • Shakirova F.M., Sakhabutdinova A.R., Bezrukova M.V. et al.: Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. — Plant Sci. 164: 317–322, 2003.

    Article  CAS  Google Scholar 

  • Shalhevet J.: Plants under salt and water stress. — In: Fowden L., Mansfield T., Stoddart J. (ed.): Plant Adaptation to Environmental Stress. Pp. 133–154. Chapman and Hall, London-Glasgow-New York-Tokyo-Melbourne-Madras 1993.

    Google Scholar 

  • Sharma D., Dubey A., Srivastav M. et al.: Effect of putrescine and paclobutrazol on growth, physiochemical parameters, and nutrient acquisition of salt-sensitive citrus rootstock Karna khatta (Citrus karna Raf.) under NaCl stress. — J. Plant Growth Regul. 30: 301–311, 2011.

    Article  CAS  Google Scholar 

  • Shi Q., Bao Z., Zhu Z. et al.: Effects of different treatments of salicylic acid on heat tolerance, chlorophyll fluorescence, and antioxidant enzyme activity in seedlings of Cucumis sativa L. — Plant Growth Regul. 48: 127–135, 2006.

    Article  CAS  Google Scholar 

  • Srivastava M.K., Dwivedi U.N.: Delayed ripening of banana fruit by salicylic acid. — Plant Sci. 158: 87–96, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Stepien P., Klobus G.: Water relations and photosynthesis in Cucumis sativus L. Leaves under salt stress. — Biol. Plantarum 50: 610–616, 2006.

    Article  CAS  Google Scholar 

  • Stevens J., Senaratna T., Sivasithamparam K.: Salicylic acid induces salinity tolerance in tomato (Lycopersicon esculentum cv. ‘Roma’): associated changes in gas exchange, water relations and membrane stabilisation. — Plant Growth Regul. 49: 77–83, 2006.

    CAS  Google Scholar 

  • Storey R., Walker R.R.: Citrus and salinity. — Sci. Hortic.-Amsterdam 78: 39–81, 1999.

    Article  CAS  Google Scholar 

  • Sudhir P., Murthy S.D.S.: Effects of salt stress on basic processes of photosynthesis. — Photosynthetica 42: 481–486, 2004.

    Article  CAS  Google Scholar 

  • Syeed S., Anjum N.A., Nazar R. et al.: Salicylic acid-mediated changes in photosynthesis, nutrients content and antioxidant metabolism in two mustard (Brassica juncea L.) cultivars differing in salt tolerance. — Acta Physiol. Plant. 33: 877–886, 2011.

    Article  CAS  Google Scholar 

  • Syvertsen J.P., Yelenosky G.: Salinity can enhance freeze tolerance of citrus rootstock seedlings by modifying growth, water relations and mineral nutrition. — J. Am. Soc. Hortic. Sci. 113: 889–893, 1988.

    Google Scholar 

  • Szepesi A., Csiszár J., Bajkán S. et al.: Role of salicylic acid pretreatment on the acclimation of tomato plants to salt- and osmotic stress. — Acta Biol. Szeged. 49: 123–125, 2005.

    Google Scholar 

  • Tari I., Csiszár J., Szalai G. et al.: Acclimation of tomato plants to salinity stress after a salicylic acid pre-treatment. — Acta Biol. Szeged. 46: 55–56, 2002.

    Google Scholar 

  • Vettakkorumakankav N.N., Falk D., Saxena P. et al.: A crucial role for gibberellins in stress protection of plants. — Plant Cell Physiol. 40: 542–548, 1999.

    Article  CAS  Google Scholar 

  • Xu Q., Xu X., Zhao Y. et al.: Salicylic acid, hydrogen peroxide and calcium-induced saline tolerance associated with endogenous hydrogen peroxide homeostasis in naked oat seedlings. — Plant Growth Regul. 54: 249–259, 2008.

    Article  CAS  Google Scholar 

  • Yildirim E., Turan M., Guvenc I.: Effect of foliar salicylic acid application on growth, chlorophyll, and mineral content of cucumber grown under salt stress. — J. Plant Nutr. 31: 593–612, 2008.

    Article  CAS  Google Scholar 

  • Zekri M., Parsons L.P.: Salinity tolerance in citrus rootstock: Effect of salt on root and leaf mineral concentrations. — Plant Soil 147: 171–181, 1992.

    Article  CAS  Google Scholar 

  • Zhao H.J., Lin X.W., Shiet H.Z. et al.: The regulating effects of phenolic compounds on the physiological characteristics and yield of soybeans. — Acta Agron. Sin. 21: 351–355, 1995.

    Google Scholar 

  • Zhou X.M, MacKenzie A.F., Madramootoo C.A. et al.: Effects of stem-injected plant growth regulators with or without sucrose on grain production biomass and photosynthetic activity of field-grown corn plants. — J. Agron. Crop Sci. 183: 103–110, 1999.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Khoshbakht.

Additional information

Acknowledgements: We would like to thank to the Department of Horticulture, College of Agriculture, University of Urmia, for financial support of the research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khoshbakht, D., Asgharei, M.R. Influence of foliar-applied salicylic acid on growth, gas-exchange characteristics, and chlorophyll fluorescence in citrus under saline conditions. Photosynthetica 53, 410–418 (2015). https://doi.org/10.1007/s11099-015-0109-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-015-0109-2

Additional key words

Navigation