Skip to main content
Log in

Heliotropic leaf movement of Sophora alopecuroides L.: An efficient strategy to optimise photochemical performance

  • Original Papers
  • Published:
Photosynthetica

Abstract

We studied the survival adaptation strategy of Sophora alopecuroides L. to habitat conditions in an arid desert riparian ecosystem. We examined the responses of heliotropic leaf movement to light conditions and their effects on plant photochemical performance. S. alopecuroides leaves did not show any observable nyctinastic movement but they presented sensitive diaheliotropic and paraheliotropic leaf movement in the forenoon and at midday. Solar radiation was a major factor inducing leaf movement, in addition, air temperature and vapour pressure deficit could also influence the heliotropic leaf movement in the afternoon. Both diaheliotropic leaf movement in the forenoon and paraheliotropic leaf movement at midday could help maintain higher photochemical efficiency and capability of light utilisation than fixed leaves. Paraheliotropic leaf movement at midday helped plants maintain a potentially higher photosynthetic capability and relieve a risk of photoinhibition. Our findings indicated the effective adaptation strategy of S. alopecuroides to high light, high temperature, and dry conditions in arid regions. This strategy can optimise the leaf energy balance and photochemical performance and ensure photosystem II function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

D:

fraction of energy lost by thermal dissipation

ETR:

electron transport rate

F0 :

minimum fluorescence yield of the dark-adapted state

F0′:

minimum fluorescence yield of the light-adapted state

Fm :

maximum fluorescence yield of the dark-adapted state

Fm′:

maximum fluorescence yield of the light-adapted state

Fs :

steady-state fluorescence

NPQ:

nonphotochemical quenching

P:

fraction of energy allocated to PSII photochemistry

qP :

photochemical quenching

SEM:

scanning electron microscopy

VPD:

vapor pressure deficit

X:

excess excitation energy

ΦPSII :

effective quantum yield of PSII in light-adapted leaves

References

  • Arena C., Vitale L., De Santo A.V.: Paraheliotropism in Robinia pseudocacia L.: an efficient strategy to optimise photosynthetic performance under natural environmental conditions. — Plant Biol. 10: 194–201, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Atta-ur-Rahman A., Choudhary M.I., Parvez K. et al.: Quinolizidine alkaloids from Sophora alopecuroides. — J. Nat. Prod. 63: 190–192, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Babani F., Lichtenthaler H.K.: Light-induced and age-dependent development of chloroplasts in etiolated barley leaves as visualized by determination of photosynthetic pigments, CO2 assimilation rates and different kinds of chlorophyll fluorescence ratios. — J. Plant Physiol. 148: 555–566, 1996.

    Article  CAS  Google Scholar 

  • Barker D.H., Adams III W.W.: The xanthophyll cycle and energy dissipation in differently oriented faces of the cactus Opuntia macrorhiza. — Oecologia 109: 353–361, 1997.

    Article  Google Scholar 

  • Berg V.S., Heuchelin S.: Leaf orientation of soybean seedlings. I. Effect of water potential and photosynthetic photon flux density on paraheliotropism. — Crop Sci. 30: 631–638, 1990.

    Article  Google Scholar 

  • Berg V.S., Hsiao T.C.: Solar tracking light avoidance induced by water stress in leaves of kidney bean seedlings in the field. — Crop Sci. 26: 980–986, 1986.

    Article  Google Scholar 

  • Bielenberg D.G., Miller J.D., Berg V.S.: Paraheliotropism in two Phaseolus species: combined effects of photon flux density and pulvinus temperature, and consequences for leaf gas exchange. — Environ. Exp. Bot. 49: 95–105, 2003.

    Article  CAS  Google Scholar 

  • Bilger W., Björkman O.: Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. — Photosynth. Res. 25: 173–185, 1990.

    Article  CAS  PubMed  Google Scholar 

  • Caldas L.S., Lüttge U., Franco A.C., Haridasan M.: Leaf heliotropism in Pterodon pubescens, a woody legume from the brasilian cerrado. — Rev. Bras. Fisiol. Veg. 9: 1–7, 1997.

    Google Scholar 

  • Demmig-Adams B., Adams, III W.W., Barker D.H. et al.: Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. — Physiol. Plantarum 98: 253–264, 1996.

    Article  CAS  Google Scholar 

  • Ehleringer J.R., Forseth I.N.: Solar tracking by plants. — Science 210: 1094–1098, 1980.

    Article  CAS  PubMed  Google Scholar 

  • Fu Q.A., Ehleringer J.R.: Heliotropic leaf movements in common beans controlled by air temperature. — Plant Physiol. 91: 1162–1167, 1989.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fu Q.A., Ehleringer J.R.: Crop physiology and metabolism: Paraheliotropic leaf movements in common bean under different soil nutrient levels. — Crop Sci. 32: 1192–1196, 1992.

    Article  Google Scholar 

  • Genty B., Briantais J.M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. — Biochim. Biophys. Acta 990: 87–92, 1989.

    Article  CAS  Google Scholar 

  • Greer D.H., Laing W.A., Woolley D.H.: The effect of chloramphenicol on photoinhibition of photosynthesis and its recovery in intact kiwifruit (Actinidia deliciosa) leaves. — Aust. J. Plant Physiol. 20: 33–43, 1993.

    Article  CAS  Google Scholar 

  • Guo Q.L., Feng Q., Li J.L.: Environmental changes after ecological water conveyance in the lower reaches of Heihe River, northwest China. — Environ. Geol. 58: 1387–1396, 2009.

    Article  Google Scholar 

  • Habermann G., Ellsworth P.F.V., Cazoto J.L. et al.: Leaf paraheliotropism in Styrax camporum confers increased light use efficiency and advantageous photosynthetic responses rather than photoprotection. — Environ. Exp. Bot. 71: 10–17, 2011.

    Article  Google Scholar 

  • Habermann G., Machado S.R., Guimarães V.F., Rodrigues J.D.: Leaf heliotropism in Styrax camporum Pohl from the Brazilian cerrado — distinct gas exchange and leaf structure, but similar leaf temperature and water relations. — Braz. J. Plant Physiol. 20: 71–83, 2008.

    Article  CAS  Google Scholar 

  • Herbert T.J.: A latitudinal cline in leaf inclination of Dryas octopetala and implications for maximization of whole plant photosynthesis. — Photosynthetica 41: 631–633, 2003.

    Article  Google Scholar 

  • Ji X.B., Kang E.S., Chen R.S. et al.: The impact of the development of water resources on environment in arid inland river basins of Hexi region, Northwestern China. — Environ. Geol. 50: 793–801, 2006.

    Article  CAS  Google Scholar 

  • Jiang C.D., Gao H.Y., Zou Q. et al.: Leaf orientation, photorespiration and xanthophyll cycle protect young soybean leaves against high irradiance in field. — Environ. Exp. Bot. 55: 87–96, 2006.

    Article  CAS  Google Scholar 

  • Jurik T.W., Akey W.C.: Solar-tracking leaf movements in velvetleaf (Abutilon theophrasti). — Plant Ecol. 112: 93–99, 1994.

    Article  Google Scholar 

  • Kao W.Y., Forseth I.N.: Diurnal leaf movement, chlorophyll fluorescence and carbon assimilation in soybean grown under different nitrogen and water availabilities. — Plant Cell Environ. 15: 7037–7043, 1992.

    Article  Google Scholar 

  • Kato E., Nagano H., Yamamura S., Ueda M.: Synthetic inhibitor of leaf-closure that reveals the biological importance of leaf movement for the survival of leguminous plants. — Tetrahedron 59: 5909–5917, 2003.

    Article  CAS  Google Scholar 

  • Koller D.: The control of leaf orientation by light. — Photochem. Photobiol. 44: 819–826, 1986.

    Article  Google Scholar 

  • Koller D.: Light-driven leaf movements. — Plant Cell Environ. 13: 615–632, 1990.

    Article  Google Scholar 

  • Liu C.C., Welham C.V.J., Zhang X.Q., Wang R.Q.: Leaflet movement of Robinia pseudoacacia in response to a changing light environment. — J. Integr. Plant Biol. 49: 419–424, 2007.

    Article  Google Scholar 

  • Liu L.X., Xu S.M., Woo K.C.: Influence of leaf angle on photosynthesis and the xanthophyll cycle in the tropical tree species Acacia crassicarpa. — Tree Physiol. 23: 1255–1261, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Long S.P., Humphries S., Falkowski P.G.: Photoinhibition of photosynthesis in nature. — Annu. Rev. Plant Physiol. Plant Mol. Biol. 45: 633–662, 1994.

    Article  CAS  Google Scholar 

  • Minoru U., Takanori S., Yoshiyuki S., Shosuke Y.: The biological significance of leaf-movement, an approach using a synthetic inhibitor of leaf-closure. — Tetrahedron Lett. 43: 7545–7548, 2002.

    Article  Google Scholar 

  • Murata N., Takahashi S., Nishiyama Y., Allakhverdiev S.I.: Photoinhibition of photosystem II under environmental stress. — Biochim. Biophys. Acta 1767: 414–421, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Müller P., Li X.P., Niyogi K.K.: Non-photochemical quenching: A response to excess light energy. — Plant Physiol. 125 1558–1566, 2001.

    Article  PubMed Central  PubMed  Google Scholar 

  • Oxborough K., Baker N.R.: Resolving chlorophyll fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components — calculation of qP and Fv/Fm without measuring Fo′. — Photosynth. Res. 54: 135–142, 1997.

    Article  CAS  Google Scholar 

  • Pastenes C., Pimentel P., Lillo J.: Leaf movements and photoinhibition in relation to water stress in field-grown beans. — J. Exp. Bot. 56: 425–433, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Powles S.B., Berry J.A., Björkman O.: Interaction between light and chilling temperature on the inhibition of photosynthesis in chilling sensitive plants. — Plant Cell Environ. 6: 117–23, 1983.

    Article  Google Scholar 

  • Proietti P., Palliotti A.: Contribution of adaxial and abaxial surfaces of olive leaves to photosynthesis. — Photosynthetica 33: 63–69, 1997.

    Article  CAS  Google Scholar 

  • Pu Q.L., Li Y., Yang J.: [Study on mass spectra of alkaloids from Sophora alopecuroides L.] — Acta Pharm. Sin. 22: 438–44, 1987. [In Chinese]

    CAS  Google Scholar 

  • Richards R.A., Rawson H.M., Johnson D.A.: Glaucousness in wheat: its development and effect on water-use efficiency, gas exchange and photosynthetic tissue temperatures. — Aust. J. Plant Physiol. 13: 465–473, 1986.

    Google Scholar 

  • Roháček K.: Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships. — Photosynthetica 40: 13–29, 2002.

    Article  Google Scholar 

  • Rosa L.M., Forseth I.N.: Diurnal patterns of soybean leaf inclination angles and azimuthal orientation under different levels of ultraviolet B radiation. — Agr. Forest Meteorol. 78: 107–119, 1995.

    Article  Google Scholar 

  • Schreiber U.: Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: an overview. — In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Pp. 279–319. Springer, Netherlands 2004.

    Chapter  Google Scholar 

  • Schreiber U., Schliwa U., Bilger W.: Continuous recording of photochemical and non-photochemical fluorescence quenching with a new type of modulation fluorometer. — Photosynth. Res. 10: 51–62, 1986.

    Article  CAS  PubMed  Google Scholar 

  • Siam A.M.J., Radoglou K.M., Noitsakis B.: Physiological and growth responses of three Mediterranean oak species to different water availability regimes. — J. Arid Environ. 72: 583–592, 2008.

    Article  Google Scholar 

  • Smith H.: Plants that track the sun. — Nature 308: 774–774, 1984.

    Article  Google Scholar 

  • Takahashi S., Murata N.: Glycerate-3-phosphate, produced by CO2 fixation in the Calvin cycle, is critical for the synthesis of the D1 protein of photosystem II. — Biochim. Biophys. Acta 1757:198–205, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi S., Murata N.: How do environmental stresses accelerate photoinhibition? — Trends Plant Sci. 13: 178–182, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Ueda M., Nakamura Y.: Chemical basis of plant leaf movement. — Plant Cell Physiol. 48: 900–907, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Wang G.X., Cheng G.D.: Water resource development and its influence on the environment in arid areas of China — the case of the Hei River basin. — J. Arid Environ. 43: 121–131, 1999.

    Article  Google Scholar 

  • Wang H.Y.; Li Y.X.; Dun L.L. et al.: Antinociceptive effects of matrine on neuropathic pain induced by chronic constriction injury. — Pharm. Biol. 51: 844–850, 2013.

    Article  CAS  Google Scholar 

  • Yu F., Berg V.S.: Control of paraheliotropism in two Phaseolus species. — Plant Physiol. 106: 1567–1573, 1994.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yu T.F., Wang J., Bian L., Zhu H.Z.: [Effect of total alkaloids of kudouzi (Sophora alopecuroides L.) on tolerance to anoxia in mice.] — China J. Chin. Mat. Med. 18: 500–502, 511, 1993. [In Chinese]

    CAS  Google Scholar 

  • Zhang S.R., Gao R.F.: Light induces leaf orientation and chloroplast movements of hybrid poplar clones. — Acta Ecol. Sin. 21: 68–74, 2001.

    Google Scholar 

  • Zhang S.R., Ma K.P., Chen L.Z.: Photosynthetic gas exchange and leaflet movement of Robinia pseudoacacia in relation to changing light environments. — Acta Bot. Sin. 44: 858–863, 2002.

    Google Scholar 

  • Zhang Y.C., Yu J.G., Wang P., Fu G.B.: Vegetation responses to integrated water management in the Ejina basin, northwest China. — Hydrol. Process. 25: 3448–3461, 2011.

    Article  Google Scholar 

  • Zhang Y.J., Feng Y.L., Feng Z.L., Cao K.F.: Morphological and physiological acclimation to growth light intensities in Pometica tomentosa. — J. Plant Physiol. Mol. Biol. 29: 206–214, 2003.

    CAS  Google Scholar 

  • Zhang Y.L., Zhang G.Y., Feng J.S., Zhang W.F.: Leaf diaheliotropic movement can improve carbon gain and water use efficiency and not intensify photoinhibition in upland cotton (Gossypium hirsutum L.). — Photosynthetica 47: 609–615, 2009.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. G. Zhu or Y. N. Chen.

Additional information

Acknowledgements: This work was supported by the National Natural Science Foundation of China (No. 91025025, No. 41101533).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, C.G., Chen, Y.N., Li, W.H. et al. Heliotropic leaf movement of Sophora alopecuroides L.: An efficient strategy to optimise photochemical performance. Photosynthetica 53, 231–240 (2015). https://doi.org/10.1007/s11099-015-0089-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-015-0089-2

Additional key words

Navigation