Skip to main content
Log in

Effects of supplementary potassium nitrate on growth and gas-exchange characteristics of salt-stressed citrus seedlings

  • Original Papers
  • Published:
Photosynthetica

Abstract

We investigated the effects of supplementary KNO3 and NaCl on one-year-old, potted Valencia orange (Citrus sinensis) scions grafted on Iranian mandarin Bakraii [Citrus reticulate × Citrus limetta] (Valencia/Bakraii) and Carrizo citrange [C. sinensis × Poncirus trifoliata] (Valencia/Carrizo) rootstocks. After watering plants for 60 days with 50 mM NaCl, the lowest reduction in dry mass, stomatal conductance, and chlorophyll (Chl) content was found in Valencia/Bakraii. Bakraii accumulated more Cl and Na+ in roots and transferred less to Valencia leaves compared with Carrizo rootstock. Moreover, higher net photosynthetic rate was found in Valencia/Bakraii than those on Carrizo rootstock. NaCl caused a decrease in the maximal efficiency of PSII photochemistry (Fv/Fm) and effective quantum yield (ΦPSII) but elevated coefficient of nonphotochemical quenching. Salinity reduced Ca2+, Mg2+, and total N contents, and increased Na+/K+ ratio in leaves and roots of both grafting combinations. Salinity increased K+ and proline content in leaves and decreased K+ concentrations in roots of both grafting combinations. In salinized plants, nitrate supplementation (10 mM KNO3) reduced leaf abscission, Cl, Na+, Na+/K+, and Ca2+ concentrations in leaves and roots of both combinations. K+ and N concentrations and proline increased in leaves of the nitrate-supplemented salinized plants. Supplementary nitrate increased leaf number and area, stem elongation, Chl content, Fv/Fm, and ΦPSII and stimulated photosynthetic activity. Thus, nitrate ameliorated the deleterious effects of NaCl stress and stimulated the plant metabolism and growth. It can be used as a vital treatment under such condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C a :

atmospheric CO2 concentration

Chl:

chlorophyll

DM:

dry mass

FM:

fresh mass

F0 :

minimal fluorescence yield of the dark-adapted state

Fm :

maximal fluorescence yield of the dark-adapted state

Fm′:

maximal fluorescence of the light-adapted state

Fs :

steady-state fluorescence

Fv/Fm :

maximum photochemical efficiency of PSII

g s :

stomatal conductance

NPQ:

nonphotochemical quenching

P N :

net photosynthetic rate

S:

NaCl salinity stress

SN:

NaCl + KNO3

ΦPSII :

effective quantum yield of PSII photochemistry

References

  • Abraham, E., Rigo, G., Szekely, G. et al.: Light dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteriod in Arabidopsis. — Plant Mol. Biol. 51: 363–372, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Al-Yassin, A.: Review: adverse effects of salinity on citrus. — Int. J. Agric. Biol. 7: 668–680, 2005.

    CAS  Google Scholar 

  • Anjum, M.A.: Effect of NaCl concentration in irrigation water on growth and polyamine metabolism in two citrus rootstocks with different levels of salinity tolerance. — Acta Physiol. Plant. 30: 43–52, 2007.

    Article  Google Scholar 

  • Arbona, V., Flors, V., Jacas, J. et al.: Enzymatic and nonenzymatic antioxidant responses of Carrizo citrange, a salt sensitive citrus rootstock, to different levels of salinity. — Plant Cell Physiol. 44: 388–394, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Ashraf, M., Foolad, M.R.: Roles of glycine betaine and proline in improving plant abiotic stress resistance. — Environ. Exp. Bot. 59: 206–216, 2007.

    Article  CAS  Google Scholar 

  • Banuls, J., Serna, M.D., Legaz, F. et al.: Growth and gas exchange parameters of citrus plants stressed with different salts. — J. Plant Physiol. 150: 194–199, 1997.

    Article  CAS  Google Scholar 

  • Bar, Y., Apelbaum, A., Kafkafi, U. et al.: Ethylene association with chloride stress in citrus plants. — Sci. Hortic.-Amsterdam 73: 99–109, 1998.

    Article  CAS  Google Scholar 

  • Bates, L.S., Waldren, R.P., Teare, I.D.: Rapid determination of free proline for water stress studies. — Plant Soil 39: 205–207, 1973.

    Article  CAS  Google Scholar 

  • Behboudian, M.H., Torokfalvy, E., Walker, R.R.: Effects of salinity on ionic content, water relations and gas exchange parameters in some citrus scion-rootstock combinations. — Sci. Hort.-Amsterdam 28: 105–116, 1986.

    Article  CAS  Google Scholar 

  • Björkman, O., Demmig, B.: Photon yield of oxygen evolution and chlorophyll fluorescence characteristics at 77°K among vascular plants of diverse origin. — Planta 170: 489–504, 1987.

    Article  PubMed  Google Scholar 

  • Botella, M.A., Martinez, V., Pardines, J. et al.: Salinity induced potassium deficiency in maize plant. — J. Plant Physiol. 150: 200–205, 1997.

    Article  CAS  Google Scholar 

  • Bremner, J.M.: Total nitrogen. — In: C.A. Black (ed.): Methods of Soil Analysis. Part 2. Pp. 1149–1178. American Society of Agronomy, Madison 1965.

    Google Scholar 

  • Cakmak, I.: The role of potassium in alleviating detrimental effects of abiotic stresses in plants. — J. Plant Nutr. Soil Sc. 168: 521–530, 2005.

    Article  CAS  Google Scholar 

  • Cerezo, M., Garcia-Agustin, P., Serna, M.D. et al.: Kinetics of nitrate uptake by Citrus seedlings and inhibitory effects of salinity. — Plant Sci. 126: 105–112, 1997.

    Article  CAS  Google Scholar 

  • Chen, C.T., Li, C.C., Kao, C.H.: Senescence of rice leaves. Changes of chlorophyll, proteins and polyamine contents and ethylene production during senescence of a chlorophylldeficient mutant. — J. Plant Growth Regul. 10: 201–205, 1991.

    Article  CAS  Google Scholar 

  • Craine, J.M.: Reconciling plant strategy theories of Grime and Tilman. — J. Ecol. 93: 1041–1052, 2005.

    Article  Google Scholar 

  • Cramer, G.R., Lynch, J., Lauchli, A. et al.: Influx of Na+, K+, and Ca2+, into roots of salt-stressed cotton seedlings. Effects of supplemental Ca2+. — Plant Physiol. 83: 510–516, 1987.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dhindsa, R.S., Plumb-Dhindsa, P., Thorpe, T.A.: Leaf senescence correlated with increased levels of membrane permeability and lipid per oxidation, and decreased levels of superoxide dismutase and catalase. — J. Exp. Bot. 32: 93–101, 1981.

    Article  CAS  Google Scholar 

  • Fernandez-Ballester, G., Garcia-Sanchez, F., Cerda A. et al.: Tolerance of citrus rootstock seedlings to saline stress based on their ability to regulate ion uptake and transport. — Tree Physiol. 23: 265–271, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Sanchez, F., Jifon, J.L., Garrajal, M. et al.: Gas exchange, chlorophyll and nutrient content in relation to Na+ and Cl accumulation in sunburst mandarin grafted on different rootstock. — Plant Sci. 162: 705–712, 2002.

    Article  CAS  Google Scholar 

  • Garcia-Legaz, M.F., Ortiz, J.M., Garcia-Lidon, A.G. et al.: Effect of salinity on growth, ion content and CO2 assimilation rate in lemon varieties on different rootstock. — Physiol. Plantarum 89: 427–432, 1993.

    Article  CAS  Google Scholar 

  • Gimeno, V., Syvertsen, J.P., Nieves, M. et al.: Additional nitrogen fertilization affects salt tolerance of lemon trees on different rootstocks. — Sci. Hortic.-Amsterdam 121: 298–305, 2009.

    Article  CAS  Google Scholar 

  • Gomez-Cadenas, A., Arbona, V., Jacas, J. et al.: Abscisic acid reduces leaf abscission and increases salt tolerance in citrus plants. — J. Plant Growth Regul. 21: 234–240, 2002.

    Article  CAS  Google Scholar 

  • Gomez-Cadenas, A., Mehouachi, J., Tadeo, F.R. et al.: Hormonal regulation of fruitlet abscission induced by carbohydrate shortage in citrus. — Planta 210: 636–643, 2000

    Article  CAS  PubMed  Google Scholar 

  • Grattan, S.R., Grieve, C.M.: Mineral element acquisition and growth response of plants grown in saline environments. — Agr. Ecosyst. Environ. 38: 275–300, 1992.

    Article  CAS  Google Scholar 

  • Grieve, A.M., Walker, R.R.: Uptake and distribution of chloride, sodium and potassium ions in salt-treated citrus plants. — Aust. J. Agr. Res. 34: 133–143, 1983.

    Article  CAS  Google Scholar 

  • Hansen, E.H., Munns, D.N.: Effects of CaSO4 and NaCl on growth and nitrogen fixation of Leucaena leucocephala. — Plant Soil 107: 95–99, 1988.

    Article  CAS  Google Scholar 

  • Heuer, B., Feigin, A.: Interactive effects of chloride and nitrate on photosynthesis and related growth parameters in tomatoes. Photosynthetica 28: 549–554, 1993.

    CAS  Google Scholar 

  • Hu, Y.C., Schmidhalter, U.: Drought and salinity: a comparison of their effects on mineral nutrition of plants. — J. Plant Nutr. Soil Sc. 168: 541–549, 2005.

    Article  CAS  Google Scholar 

  • Iglesias, D.J., Levy, Y., Gomez-Cadenas, A. et al.: Nitrate improves growth in salt-stressed citrus seedlings through effects on photosynthetic activity and chloride accumulation. — Tree Physiol. 24: 1027–1034, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Iglesias, D.J., Tadeo, F.R., Primo-Millo, E. et al.: Fruit set dependence on carbohydrate availability in citrus trees. — Tree Physiol. 23: 199–204, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Khayyat, M., Tehranifar, A., Davarynejad, G.H. et al.: Vegetative growth, compatible solute accumulation, ion partitioning and chlorophyll fluorescence performance of ‘Malas-e-Saveh’ and ‘shishe-Kab’ pomegranates in response to salinity stress induced by NaCl under field condition. — Photosynthetica 52: 301–312, 2014.

    Article  CAS  Google Scholar 

  • Lichtenthaler, R.K.: Chlorophylls and carotenoids-pigments of photosynthetic biomembranes. — In: Colowick, S. P., Kaplan, N. O (ed.): Methods in Enzymology. Vol. 148. Pp. 350–382. Academic Press, San Diego, New York, Berkeley, Boston, London, Sydney, Tokyo, Toronto 1987.

    Google Scholar 

  • Lopez-Climent, M.F., Arbona, V., Perez-Clemente, R.M. et al.: Relationship between salt tolerance and photosynthetic machinery per formation in citrus. — Environ. Exp. Bot. 62: 176–184, 2008.

    Article  CAS  Google Scholar 

  • Maas, E.V.: Salinity and citriculture. — Tree Physiol. 12: 195–216, 1993.

    Article  CAS  PubMed  Google Scholar 

  • Mansfield, T.A., Hetherington, A.M., Atkinson, C.J.: Some aspects of stomatal physiology. — Annu. Rev. Plant Phys. 41: 55–75, 1990.

    Article  CAS  Google Scholar 

  • Marschner, H.: Mineral Nutrition of Higher Plants. Pp. 889. Academic Press, San Diego 1995.

    Google Scholar 

  • Maxwell, K., Johnson, G.N.: Chlorophyll fluorescence — a practical guide. — J. Exp. Bot. 51: 659–668, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Moya, J.L., Primo-Millo, E., Talon, M.: Morphological factors determining salt tolerance in citrus seedlings: the shoot to root ratio modulates passive root uptake of chloride ions and their accumulation in leaves. — Plant Cell Environ. 22: 1425–1433, 1999.

    Article  CAS  Google Scholar 

  • Munns, R., Tester, M.: Mechanism of salinity tolerance. — Annu. Rev. Plant Biol. 59: 651–681, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Nishihara, E., Kondo, K., Masud Parvez, M. et al.: Role of 5-aminolevulinic acid (ALA) on active oxygen-scavenging system in NaCl-treated spinach (Spinacia oleracea). — J. Plant Physiol. 160: 1085–1091, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Ravindran, K.C., Venkatesan, K., Balakrishnan, V. et al.: Restoration of saline land by halophytes for Indian soils. — Soil Biol. Biochem. 39: 2661–2664, 2007.

    Article  CAS  Google Scholar 

  • Rengel, Z.: The role of calcium in salt toxicity. — Plant Cell Environ. 15: 625–632, 1992.

    Article  CAS  Google Scholar 

  • Romero-Aranda, R., Moya, J.L., Tadeo, F.R. et al.: Physiological and anatomical disturbances induced by chloride salts in sensitive and tolerant citrus: beneficial and detrimental effects of cations. — Plant Cell. Environ. 21: 1243–1253, 1998.

    Article  CAS  Google Scholar 

  • Ruiz, D., Martinez, V., Cerada, A.: Citrus response to salinity: growth and nutrient uptake. — Tree Physiol. 17: 141–150, 1997.

    Article  CAS  PubMed  Google Scholar 

  • Sabater, B., Rodriguez, M.T.: Control of chlorophyll degradation in detached leaves of barley and oat through effect of kinetin on chlorophyllase levels. — Physiol. Plantarum 43: 274–276, 1978.

    Article  CAS  Google Scholar 

  • Syvertsen, J.P., Yelenosky, G.: Salinity can enhance freeze tolerance of citrus rootstock seedlings by modifying growth, water relations and mineral nutrition. — J. Am. Soc. Hortic. Sci. 113: 889–893, 1988.

    Google Scholar 

  • Tonon, G., Kevers, C., Faivre-Rampant, O. et al.: Effect of NaCl and mannitol iso-osmotic stresses on proline and free polyamine levels in embryogenic Fraxinus angustifolia callus. — J. Plant Physiol. 161: 701–708, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Tozlu, I., Moore, G.A., Guy, C.L.: Effect of increasing NaCl concentration on stem elongation, dry mass production, and macro- and micro- nutrient accumulation in Poncirus trifoliate. — Aust. J. Plant Physiol. 27: 35–42, 2000.

    CAS  Google Scholar 

  • Tyerman, S.D., Skerrett, I.M.: Root ion channels and salinity. — Sci. Hortic.-Amsterdam 78: 175–235, 1999.

    Article  CAS  Google Scholar 

  • Walker, R.R., Blackmore, D.H., Qing, S.: Carbon dioxide assimilation and foliar ion concentration in leaves of lemon (Citrus limon L.) trees irrigated with NaCl or Na2SO4. — Aust. J. Plant Physiol. 20: 173–185, 1993.

    Article  CAS  Google Scholar 

  • Yang, C.W., Wang, P., Li, C.Y. et al.: Comparison of effects of salt and alkali stresses on the growth and photosynthesis of wheat. — Photosynthetica 46: 107–114, 2008.

    Article  CAS  Google Scholar 

  • Zekri, M., Parsons, L.P.: Salinity tolerance in citrus rootstock: Effect of salt on root and leaf mineral concentrations. — Plant Soil 147: 171–181, 1992.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Khoshbakht.

Additional information

Acknowledgements: We would like to thank to the Department of Horticulture, College of Agriculture, Isfahan University of Technology, for financial support of the research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khoshbakht, D., Ghorbani, A., Baninasab, B. et al. Effects of supplementary potassium nitrate on growth and gas-exchange characteristics of salt-stressed citrus seedlings. Photosynthetica 52, 589–596 (2014). https://doi.org/10.1007/s11099-014-0068-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-014-0068-z

Additional key words

Navigation