Skip to main content
Log in

Effects of light intensity and temperature on the photosynthetic irradiance response curves and chlorophyll fluorescence in three picocyanobacterial strains of Synechococcus

  • Published:
Photosynthetica

Abstract

Chrococcoid cyanobacteria of the genus Synechococcus are the important component of marine and freshwater ecosystems. Picocyanobacteria comprise even 80% of total cyanobacterial biomass and contribute to 50% of total primary cyanobacterial bloom production. Chlorophyll (Chl) fluorescence and photosynthetic light response (P-I) curves are commonly used to characterize photoacclimation of Synechococcus strains. Three brackish, picocyanobacterial strains of Synechococcus (BA-132, BA-124, BA-120) were studied. They were grown under 4 irradiances [10, 55, 100, and 145 μmol(photon) m−2 s−1] and at 3 temperatures (15, 22.5, and 30°C). Photosynthetic rate was measured by Clark oxygen electrode, whereas the Chl fluorescence was measured using Pulse Amplitude Modulation fluorometer. Based on P-I, two mechanisms of photoacclimation were recognized in Synechococcus. The maximum value of maximum rate of photosynthesis (P max) expressed per biomass unit at 10 μmol(photon) m−2 s−1 indicated a change in the number of photosynthetic units (PSU). The constant values of initial slope of photosynthetic light response curve (α) and the maximum value of P max expressed per Chl unit at 145 μmol(photon) m−2 s−1 indicated another mechanism, i.e. a change in PSU size. These two mechanisms caused changes in photosynthetic rate and its parameters (compensation point, α, saturation irradiance, dark respiration, P max) upon the influence of different irradiance and temperature. High irradiance had a negative effect on fluorescence parameters, such as the maximum quantum yield and effective quantum yield of PSII photochemistry (φPSII), but it was higher in case of φPSII.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ANOVA :

analysis of variance

CCBA:

Culture Collection of Baltic Algae

Chl:

chlorophyll

I K :

saturation irradiance

FV/FM :

maximum quantum yield of PSII photochemistry

N:

number of cells

OD:

optical density

PAR:

photosynthetically active radiation

PAM:

Pulse Amplitude Modulation

CP:

compensation point

P-I :

photosynthetic light response

P max :

maximum photosynthetic rate

P N :

net photosynthetic rate

PSU:

photosynthetic units

R D :

dark respiration rate

TEM:

transmission electron microscope

ΦPSII :

effective quantum yield of PSII photochemistry

α:

initial slope of photosynthetic light response curve

References

  • Albertano, P., Di Somma, D., Capucci, E.: Cyanobacterial picoplankton from the Central Baltic Sea: cell size classification by image-analyzed fluorescence microscopy. — J. Plankton Res. 19: 1405–1416, 1997.

    Article  Google Scholar 

  • Antia, N.J.: Effects of temperature on the darkness survival of marine microplanktonic algae. — Microb. Ecol. 3: 41–54, 1976.

    Article  CAS  PubMed  Google Scholar 

  • Björkman, O., Demmig, B.: Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77K among vascular plants of diverse origins. — Planta 170: 489–504, 1987.

    Article  PubMed  Google Scholar 

  • Blackburn, S.I., McCausland, M.A., Bolch, C.J.S., Newman, S.J., Jones, G.J.: Effect of salinity and toxin production in cultures of the bloom-forming cyanobacterium Nodularia spumigena from Australian waters. — Phycologia 35: 511–522, 1996.

    Article  Google Scholar 

  • Callieri, C., Moro, S., Caravati, E., Crosbie, N.D., Weisse, T.: Strain-specific photosynthetic response of freshwater picocyanobacteria. — Verh. Internat. Verein. Limnol. 29: 777–782, 2005.

    CAS  Google Scholar 

  • Campbell, D., Hurry, V., Clarke, A.K., Gustafsson, P., Öquist, G.: Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. — Microbiol. Mol. Biol. R. 62: 667–683, 1998.

    CAS  Google Scholar 

  • Defew, E.C., Perkins, R.G., Paterson, D.M.: The influence of light and temperature interactions on a natural estuarine microphytobenthic assemblage. — Biofilms 1: 21–30, 2004.

    Article  Google Scholar 

  • Dring, M.J.: The Biology of Marine Plants. 199 pp. Cambridge Univ. Press, Cambridge 1998.

    Google Scholar 

  • Dubinsky, A., Stambler, N.: Photoacclimation processes in phytoplankton: mechanisms, consequences, and applications. — Aquat. Microb. Ecol. 56: 163–176, 2009.

    Article  Google Scholar 

  • Fisher, R.A., Yates, F.: Statistical Tables for Biological, Agricultural and Medical Research. 6th ed. 138 pp. Olivier and Boyd, Edinburgh 1963.

    Google Scholar 

  • Fogg, G.E.: Ocean ecology: Light and Ultraphytoplankton. 99 pp. Nature Publishing Group, London 1986.

    Google Scholar 

  • Fogg, G.E., Thake, B.: Algal Cultures and Phytoplankton Ecology. 269 pp. University of Wisconsin Press, Madison and Milwaukee 1987.

    Google Scholar 

  • Glover, H. E., Phinney, D.A., Yentsch, C.S.: Photosynthetic characteristics of picoplankton compared with those of larger phytoplankton populations, in various water masses in the Gulf of Maine. — Biological Oceanogr. 3: 223–248, 1985.

    Google Scholar 

  • Hajdu, S., Höglander, H., Larsson, U.: Phytoplankton vertical distributions and composition in Baltic Sea cyanobacterial blooms. — Harmful Algae 6: 189–205, 2007.

    Article  Google Scholar 

  • Henley, W.J.: Measurement and interpretation of photosynthetic light-response curves in algae in the context of photoinhibition and diel changes. — J. Phycol. 29: 729–739, 1993.

    Article  Google Scholar 

  • Ibelings, B.W.: Changes in photosynthesis in response to combined irradiance and temperature stress in cyanobacterial surface waterblooms. — J. Phycol. 32: 549–557, 1996.

    Article  Google Scholar 

  • Jasser, I.: The relationship between autotrophic picoplankton (APP) — the smallest autotrophic component of food web and the trophic status and depth of lakes. — Ecohydrol. Hydrobiol. 6: 69–77, 2006.

    Article  Google Scholar 

  • Jasser, I., Arvola, L.: Potential effects of abiotic factors on the abundance of autotrophic picoplankton in four boreal lakes. — J. Plankton Res. 25: 873–883, 2003.

    Article  CAS  Google Scholar 

  • Jodłowska, S., Śliwińska, S., Latała, A.: The influence of irradiance on the growth and photosynthetic pigments of three Baltic picocyanobacterial strains of Synechococcus. — In: Olańczuk-Neymen, K., Mazur-Marzec, H. (ed.): Microorganisms in the Environment and Environmental Engineering from Ecology to Technology. Pp. 85–92. Monografie Komitetu Inżynierii Środowiska PAN, no. 64, Zabrze 2010.

  • Jodłowska, S., Latała, A.: Photoacclimation strategies in toxic cyanobacterium Nodularia spumigena (Nostocales, Cyanobacteria) — Phycologia 49: 203–211, 2010.

    Article  Google Scholar 

  • Jodłowska, S., Latała, A.: Mechanisms of photoacclimation on photosynthesis level in Cyanobacteria. — In: Najafpour, M.M. (ed.): Advances in Photosynthesis — Fundamental Aspects. Pp. 97–108. InTech, Croatia, 2012.

    Google Scholar 

  • Jodłowska, S., Latała, A.: Combined effects of light and temperature on growth, photosynthesis, and pigment content in the mat-forming cyanobacterium Geitlerinema amphibium. — Photosynthetica 51: 202–214, 2013.

    Article  Google Scholar 

  • Kahru, M., Leppänen, J.-M., Rud, O., Savchuk, O.P.: Cyano-bacterial blooms in the Gulf of Finland triggered by saltwater inflow into the Baltic Sea. — Mar. Ecol. Prog. Ser. 207: 13–18, 2000.

    Article  Google Scholar 

  • Kana, T.M., Glibert, P.M.: Effect of irradiances up to 2000 μmol E m−2 s−1 on marine Synechococcus WH7803-I. Growth, pigmentation, and cell composition. — Deep-Sea Res. 34: 479–495, 1987.

    Article  CAS  Google Scholar 

  • Kulk, G., van de Poll, W.H., Visser, R.J.W, Buma, A.G.J.: Distinct differences in photoacclimation potential between prokaryotic and eukaryotic oceanic phytoplankton. — J. Exp. Mar. Biol. Ecol. 398: 63–72, 2011.

    Article  Google Scholar 

  • Latała, A., Jodłowska, S., Pniewski, F.: Culture Collection of Baltic Algae (CCBA) and characteristic of some strains by factorial experiment approach. — Algological Studies, 122: 137–154, 2006.

    Article  Google Scholar 

  • Mackey, K.R.M., Paytan, A., Grossman, A.R., Bailey, S.: A photosynthetic strategy for coping in a high light, low nutrient environment. — Limnol. Oceanogr. 53: 900–913, 2008.

    Article  CAS  Google Scholar 

  • MacIntyre, H.L., Kana, T.M., Anning, T., Geider, R.J.: Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and Cyanobacteria. — J. Phycol. 38: 17–38, 2002.

    Article  Google Scholar 

  • Maxwell, K., Johnson, G.N.: Chlorophyll fluorescence — a practical guide. — J. Exp. Bot. 51: 659–668, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Mouget, J.-L., Tremblin, G., Morant-Manceau, A., Morancais, M., Robert, J.-M.: Long-term photoacclimation of Haslea ostrearia (Bacillariophyta): effect of irradiance on growth rates, pigment content and photosynthesis. — Eur. J. Phycol. 34: 109–115, 1999.

    Article  Google Scholar 

  • Oktaba, W.: [Methods of Mathematical Statistics in Experiments]. 488 pp. PWN, Warszawa 1986. [In Polish]

    Google Scholar 

  • Panosso, R., Graneli, E.: Effects of dissolved organic matter on the growth of Nodularia spumigena (Cyanophyceae) cultivated under N or P deficiency. — Mar. Biol. 136: 331–336, 2000.

    Article  Google Scholar 

  • Platt, T., Jassby, A.D.: The relationship between photosynthesis and light for natural assemblages of coastal marine phytoplankton. — J. Phycol. 12: 421–430, 1976.

    Google Scholar 

  • Platt. T, Gallegos, C.L., Harrison, W.G.: Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. — J. Mar. Res. 38: 687–701, 1980.

    Google Scholar 

  • Prézelin, B.B.: Light reactions in photosynthesis. — Can. B. Fish. Aquat. Sci. 210: 1–43, 1981.

    Google Scholar 

  • Ramus, J.: The capture and transduction of light energy. — In: Lobban, C.S., Wynne, M.J. (ed.): The Biology of Seaweeds. Pp. 458–492. Blackwell Scientific, Oxford 1981.

    Google Scholar 

  • Richardson, K., Beardall, J., Raven, J.A.: Adaptation of unicellular algae to irradiance: an analysis of strategies. — New Phytol. 93: 157–191, 1983.

    Article  Google Scholar 

  • Richardson, T.L., Jackson, G.A.: Small phytoplankton and carbon export from the surface ocean. — Science 315: 838–840, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Rohacek, K.: Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships. — Photosynthetica 40: 13–29, 2002.

    Article  CAS  Google Scholar 

  • Six, C., Finkel, Z.V., Irwin, A.J., Campbell, D.A.: Light variability illuminates niche-partitioning among marine picocyanobacteria. — PLOS ONE: doi:10.1371/journal.pone. 0001341, 2007.

  • Snedecor, G.W., Cochran, W.G.: Statistical Methods. 703 pp. Iowa State University Press, Ames 1980.

    Google Scholar 

  • Stal, L.J., Walsby, A.E.: Photosynthesis and nitrogen fixation in a cyanobacterial bloom in the Baltic Sea. — Eur. J. Phycol. 35: 97–108, 2000.

    Article  Google Scholar 

  • Stal, L.J., Albertano, P., Bergman, B., et al.: BASIC: Baltic Sea cyanobacteria. An investigation of the structure and dynamics of water blooms of cyanobacteria in the Baltic Sea — responses to a changing environment. — Cont. Shelf Res. 23: 1695–1714, 2003.

    Article  Google Scholar 

  • Stanier, R. Y., Kunisawa, R., Mandel, M., Cohen-Bazire, G.: Purification and properties of unicellular blue-green algae (order Chroococcales). — Bacteriol. Rev. 35: 171–205, 1971.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Strickland, I.D.H., Parsons, T.R.: A practical handbook of seawater analysis. — Bull. Fish. Res. Bd. Can. 167: 1–310, 1972.

    Google Scholar 

  • Surosz, W., Palinska, K.A.: Ultrastructural changes induced by selected Cd and Cu concentrations in the cyanobacterium Phormidium: Interaction with salinity. — J. Plant Physiol. 157: 643–650, 2000.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Jodłowska.

Additional information

Acknowledgements: This study was supported by research grant issued by the Council for Science — Poland (N304 3278 36) and by the University of Gdańsk (BW/G245-5-0233-9, BW/G245-5-0502-0).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jodłowska, S., Śliwińska, S. Effects of light intensity and temperature on the photosynthetic irradiance response curves and chlorophyll fluorescence in three picocyanobacterial strains of Synechococcus . Photosynthetica 52, 223–232 (2014). https://doi.org/10.1007/s11099-014-0024-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-014-0024-y

Additional key words

Navigation