Skip to main content

Advertisement

Log in

A newly developed SGB buffer greatly enhances energy transfer efficiency from phycobilisomes to photosystem II in cyanobacteria in vitro

  • Published:
Photosynthetica

Abstract

The transfer of light energy from phycobilisomes (PBS) to photosystem II (PSII) reaction centers is vital for photosynthesis in cyanobacteria and red algae. To investigate the relationship between PBS and PSII and to optimize the energy transfer efficiency from PBS to PSII, isolation of the PBS-PSII supercomplex is necessary. SPC (sucrose/phosphate/citrate) is a conventional buffer for isolating PBS-PSII supercomplex in cyanobacteria. However, the energy transfer occurring in the supercomplex is poor. Here, we developed a new buffer named SGB by adding 1M glycinebetaine and additional sucrose to SPC buffer. Compared to SPC, the newly developed SGB buffer greatly enhanced the associated populations of PBS with thylakoid membranes and PSII and further improved the energy transfer efficiency from PBS to PSII reaction centers in cyanobacteria in vitro. Therefore, we conclude that SGB is an excellent buffer for isolating the PBS-PSII supercomplex and for enhancing the energy transfer efficiency from PBS to PSII reaction centers in cyanobacteria in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APC:

allophycocyanin

Chl:

chlorophyll

GB:

glycinebetaine

NQ:

1,4-naphthoquinone

PBS:

phycobilisome

PC:

phycocyanin

PSII:

photosystem II

SGB:

sucrose/phosphate/citrate/glycinebetaine

SPC:

sucrose/phosphate/citrate

Suc:

sucrose

Synechocystis 6803:

Synechocystis sp. strain PCC 6803

References

  • Allakhverdiev, S.I., Feyziev, Y.M., Ahmed, A., et al.: Stabilization of oxygen evolution and primary electron transport reactions in photosystem II against heat stress with glycinebetaine and sucrose. — J. Photochem. Photobiol. B 34: 149–157, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Allen, M.M.: Simple conditions for growth of unicellular bluegreen algae on plates. — J. Phycol. 4: 1–4, 1968.

    Article  CAS  Google Scholar 

  • Amesz, J., Fork, D.F.: Quenching of chlorophyll fluorescence by quinines in algae and chloroplasts. — Biochim. Biophys. Acta 143: 97–107, 1967.

    Article  PubMed  CAS  Google Scholar 

  • Arnon, D.I., McSwain, B.D., Tsujimoto, H.Y., Wada, K.: Photochemical activity and components of membrane preparations from blue-green algae. I. Coexistence of two photosystems in relation to chlorophyll a and removal of phycocyanin. — Biochim. Biophys. Acta 357: 231–245, 1974.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, A., Bogorad, L.: Complementary chromatic adaptation in a filamentous blue-green alga. — J. Cell Biol. 58: 419–435, 1973.

    Article  PubMed  CAS  Google Scholar 

  • Brimble, S., Bruce, D.: Pigment orientation and excitation energy transfer in Porphyridium cruentum and Synechococcus sp. PCC 6301 cross-linked in light state 1 and light state 2 with glutaraldehyde. — Biochim. Biophys. Acta 973: 315–323, 1989.

    Google Scholar 

  • Clement-Metral, J.D., Gantt, E.: Isolation of oxygen-evolving phycobilisome-photosystem II particles from Porphyridium cruentum. — FEBS Lett. 156: 185–188, 1983.

    Article  CAS  Google Scholar 

  • Clement-Metral, J.D., Gantt, E., Redlinger, T.: A photosystem II-phycobilisome preparation from the red alga, Porphyridium cruentum: Oxygen evolution, ultrastructure, and polypeptide resolution. — Arch. Biochem. Biophys. 238: 10–17, 1985.

    Article  PubMed  CAS  Google Scholar 

  • Fork, D.C., Sen, A., Williams, W.P.: The relationship between heat stress and photobleaching in green and blue-algae. — Photosynth. Res. 11: 71–87, 1987.

    Article  CAS  Google Scholar 

  • Gantt, E., Lipschultz, C.A.: Phycobilisomes of Porphyridium cruentum. I. Isolation. — J. Cell Biol. 54: 313–324, 1972.

    Article  PubMed  CAS  Google Scholar 

  • Govindjee: Sixty-three years since Kautsky: Chlorophyll a fluorescence. — Aust. J. Plant. Physiol. 22: 131–160, 1995.

    Article  CAS  Google Scholar 

  • Gray, B.H., Lipschultz, C.A., Gantt, E.: Phycobilisomes from a blue-green alga Nostoc species. — J. Bacteriol. 116: 471–478, 1973.

    PubMed  CAS  Google Scholar 

  • Joshua, S., Mullineaux, C.W.: Phycobilisome diffusion is required for light-state transitions in cyanobacteria. — Plant Physiol. 135: 2112–2119, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Karapetyan, N.V.: Protective dissipation of excess absorbed energy by photosynthetic apparatus of cyanobacteria: role of antenna terminal emitters. — Photosynth. Res. 97: 195–204, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Katoh, T., Gantt, E.: Photosynthetic vesicles with bound phycobilisomes from Anabaena variabilis. — Biochim. Biophys. Acta 546: 383–393, 1979.

    Article  PubMed  CAS  Google Scholar 

  • Krause, G.H., Weis, E.: Chlorophyll fluorescence and photosynthesis: the basics. — Annu. Rev. Plant. Physiol. Plant Mol. Biol. 42: 313–349, 1991.

    Article  CAS  Google Scholar 

  • Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. — Nature 227: 680–685, 1970.

    Article  PubMed  CAS  Google Scholar 

  • Li, D.H., Xie, J., Zhao, Y.W., Zhao, J.Q.: Probing connection of PBS with the photosystems in intact cells of Spirulina platensis by temperature-induced fluorescence fluctuation. — Biochim. Biophys. Acta 1557: 40–45, 2003.

    Google Scholar 

  • Li, D.H., Xie, J., Zhao, J.Q. et al.: Light-induced excitation energy redistribution in Spirulina platensis cells: “spillover” or “mobile PBSs”? — Biochim. Biophys. Acta 1608: 114–121, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Li, H., Yang, S.Z., Xie, J., Zhao, J.Q.: Probing the connection of PBSs to the photosystems in Spirulina platensis by artificially induced fluorescence fluctuations. — J. Lumin. 122–123: 294–296, 2007.

    Article  Google Scholar 

  • Li, Y., Zhang, J.P., Xie, J., Zhao, J.Q., Jiang, L.J.: Temperatureinduced decoupling of phycobilisomes from reaction centers. — Biochim. Biophys. Acta 1504: 229–234, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Ma, W.M., Chen, L.P., Wei, L.Z., Wang, Q.X.: Excitation energy transfer between photosystems in the cyanobacterium Synechocystis 6803. — J. Lumin. 128: 546–548, 2008.

    Article  CAS  Google Scholar 

  • Ma, W.M., Mi, H.L., Shen, Y.G.: Influence of the redox state of QA on phycobilisome mobility in the cyanobacterium Synechocystis sp. strain PCC 6803. — J. Lumin. 130: 1169–1173, 2010.

    Article  Google Scholar 

  • Ma, W.M., Ogawa, T., Shen, Y.G., Mi, H.L.: Changes in cyclic and respiratory electron transport by the movement of phycobilisomes in the cyanobacterium Synechocystis sp. strain PCC 6803. — Biochim. Biophys. Acta 1767: 742–749, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Mohanty, P., Hoshina, S., Fork, D.C.: Energy transfer from phycobilins to chlorophyll a in heat-stressed cells of Anacystis nidulans: characterization of the low temperature 683 nm fluorescence emission band. — Photochem. Photobiol. 41: 589–596, 1985.

    Article  Google Scholar 

  • Mullineaux, C.W.: Phycobilisome-reaction centre interaction in cyanobacteria. — Photosynth. Res. 95: 175–182, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Ono, T., Murata, N.: Photosynthetic electron transport and phosphorylation reactions in thylakoid membranes from the blue-green alga Anacystis nidulans. — Biochim. Biophys. Acta 502: 477–485, 1978.

    Article  PubMed  CAS  Google Scholar 

  • Pakrasi, H.B., Sherman, L.: A highly active oxygen-evolving photosystem II preparation from the cyanobacterium Anacystis nidulans. — Plant Physiol. 74: 742–745, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Papageorgiou, G.C., Fujimura, Y., Murata, N.: Protection of the oxygen-evolving photosystem II complex by glycinebetaine. — Biochim. Biophys. Acta 1057: 361–366, 1991.

    Article  CAS  Google Scholar 

  • Papageorgiou, G.C., Murata, N.: The unusually strong stabilizing effects of glycinebetaine on the structure and function of the oxygen-evolving photosystem II complex. — Photosynth. Res. 44: 243–252, 1995.

    Article  CAS  Google Scholar 

  • Porra, R.J., Thompson, W.A., Kriedeman, P.E.: Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophyll a and b extracted with four different solvents; verification of the concentration of chlorophyll standards by absorption spectroscopy. — Biochim. Biophys. Acta 975: 384–394, 1989.

    Article  CAS  Google Scholar 

  • Salehian, O., Bruce, D.: Distribution of excitation energy in photosynthesis: quantification of fluorescence yields from intact cyanobacteria. — J. Lumin. 51: 91–98, 1992.

    Article  CAS  Google Scholar 

  • Wang, R.T., Stevens, C.L.R., Myers, J.: Action spectra for photoreactions I and II for photosynthesis in the blue-green alga Anacystis nidulans. — Photochem. Photobiol. 25: 103–108, 1977.

    Article  CAS  Google Scholar 

  • Yang, S.Z., Su, Z.Q., Li, H. et al.: Demonstration of phycobilisome mobility by the time- and space-correlated fluorescence imaging of a cyanobacterial cell. — Biochim. Biophys. Acta 1767: 15–21, 2007.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Q. X. Wang or W. M. Ma.

Additional information

Acknowledgements: This work was partially supported by Key Project of Science and Technology Commission of Shanghai (No. 09160500400), Key Project of Chinese Ministry of Education (No. 209045), National Basic Research Program of China (No. 2009CB118500), and Shanghai Municipal Education Commission (Nos. J50401, 11YZ89, and 12ZZ132).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, L.P., Wang, Q.X. & Ma, W.M. A newly developed SGB buffer greatly enhances energy transfer efficiency from phycobilisomes to photosystem II in cyanobacteria in vitro . Photosynthetica 51, 215–220 (2013). https://doi.org/10.1007/s11099-013-0018-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-013-0018-1

Additional key words

Navigation