Skip to main content
Log in

Root nutrient uptake enhances photosynthetic assimilation in prey-deprived carnivorous pitcher plant Nepenthes talangensis

  • Original Papers
  • Published:
Photosynthetica

Abstract

Carnivorous plants grow in nutrient-poor habitats and obtain substantial amount of nitrogen from prey. Specialization toward carnivory may decrease the ability to utilize soil-derived sources of nutrients in some species. However, no such information exists for pitcher plants of the genus Nepenthes, nor the effect of nutrient uptake via the roots on photosynthesis in carnivorous plants is known. The principal aim of present study was to investigate, whether improved soil nutrient status increases photosynthetic efficiency in prey-deprived pitcher plant Nepenthes talangensis. Gas exchange and chlorophyll (Chl) fluorescence were measured simultaneously and were correlated with Chl and nitrogen concentration as well as with stable carbon isotope abundance (δ13C) in control and fertilized N. talangensis plants. Net photosynthetic rate (P N) and maximum- (Fv/Fm) and effective quantum yield of photosystem II (ΦPSII) were greater in the plants supplied with nutrients. Biomass, leaf nitrogen, and Chl (a+b) also increased in fertilized plants. In contrast, δ13C did not differ significantly between treatments indicating that intercellular concentration of CO2 did not change. We can conclude that increased root nutrient uptake enhanced photosynthetic efficiency in prey-deprived N. talangensis plants. Thus, the roots of Nepenthes plants are functional and can obtain a substantial amount of nitrogen from the soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

C a :

ambient CO2 concentration

C i :

intercellular CO2 concentration

Chl:

chlorophyll

F0 :

minimal fluorescence

F0′:

F0 of the light-adapted state

Fv/Fm :

maximal quantum yield of PSII

g s :

stomatal conductance

NPQ:

non-photochemical quenching

PAR:

photosynthetic active radiation

P N :

net photosynthetic rate

P Nmax :

maximum net photosynthetic rate at saturation irradiance

PNUE:

photosynthetic nitrogen use efficiency

PSII:

photosystem II

qP :

photochemical quenching coefficient

R D :

respiration rate

WUE:

water use efficiency

δ13C:

carbon stable isotope abundance

ΦPSII :

effective quantum yield of PSII

References

  • Adamec, L.: Mineral nutrition of carnivorous plants — A review. — Bot. Rev. 63: 273–299, 1997.

    Article  Google Scholar 

  • Adlassnig, W., Peroutka, M., Lambers, H., Lichtscheidl, I.K.: The roots of carnivorous plants. — Plant Soil 274: 127–140, 2005.

    Article  CAS  Google Scholar 

  • Aldenius, J., Carlsson, B., Karlsson, S.: Effects of insect trapping on growth and nutrient content of Pinguicula vulgaris L. in relation to the nutrient content of the substrate. — New Phytol. 93: 53–59, 1983.

    Article  Google Scholar 

  • Björkman, O., Demmig, B.: Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. — Planta 170: 489–504, 1987.

    Article  Google Scholar 

  • Bott, T., Gretchen, A.M., Young, E.B.: Nutrient limitation and morphological plasticity of the carnivorous pitcher plant Sarracenia purpurea in contrasting wetland environments. — New Phytol. 180: 631–641, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Brewer, J.S.: Why don’t carnivorous pitcher plant’s compete with non-carnivorous plants for nutrients? — Ecology 84: 451–462, 2003.

    Article  Google Scholar 

  • Clarke, C., Moran, J.: Nepenthes of Sumatra and Peninsular Malaysia. — Natural History Publications, Kota Kinabalu 2001.

    Google Scholar 

  • Darwin, C.R.: Insectivorous Plants — John Murray, London 1875.

    Google Scholar 

  • Darwin, F.: Experiments on the nutritions of Drosera rotundifolia. — J. Linn. Soc. Bot. (London) 17: 17–23, 1878.

    Google Scholar 

  • Eleuterius, L.N., Jones, S.B.: A floristic and ecological study of pitcher plant bog in south Mississippi. — Rhodora 71: 29–34, 1969.

    Google Scholar 

  • Ellison, A.M.: Nutrient limitation and stoichiometry of carnivorous plants. — Plant Biol. 8: 740–747, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Ellison, A.M., Gotelli, N.J.: Nitrogen availability alters the expression of carnivory in the northern pitcher plant Sarracenia purpurea. — Proc. Nat. Acad. Sci. USA 99: 4409–4412, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Farnsworth, E.J., Ellison A.M.: Prey availability directly affects physiology, growth, nutrient allocation and scaling relationships among leaf traits in 10 carnivorous plant species. — J. Ecol. 96: 213–221, 2008.

    Google Scholar 

  • Farquhar, G.D., Ehleringer, J.R., Hubick, K.T.: Carbon isotope discrimination and photosynthesis. — Ann. Rev. Plant Physiol. Plant Mol. Biol. 40: 503–537, 1989.

    Article  CAS  Google Scholar 

  • Givnish, T.J., Burkhardt, E.L., Happel, R.E., Weintraub, J.D.: Carnivory in the bromeliad Brocchinia reducta with a cost/benefit model for the general restriction of carnivorous plants to sunny, moist, nutrient-poor habitats. — Am. Natur. 124: 479–497, 1984.

    Article  Google Scholar 

  • Huang, Z.-A., Jiang, D.-A., Yang, Y., Sun, J.-W., Jin, S.-H.: Effect of nitrogen deficiency on gas exchange, chlorophyll fluorescence and antioxidant enzymes in leaves of rice plants. — Photosynthetica 42: 357–364, 2004.

    Article  CAS  Google Scholar 

  • Juniper B.E., Robins R.J., Joel D.M.: The Carnivorous Plants. — Academic Press, London 1989.

    Google Scholar 

  • Karlsson, P.S., Pate, J.S.: Contrasting effects of supplementary feeding of insects or mineral nutrients on the growth and nitrogen and phosphorous economy of pygmy species of Drosera. — Oecologia 92: 8–13, 1992.

    Article  Google Scholar 

  • Lichtenthaler, H.K.: Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. — Met. Enzymol. 148: 350–382, 1987.

    Article  CAS  Google Scholar 

  • Maxwell, K., Johnson, G.N.: Chlorophyll fluorescence — a practical guide. — J. Exp. Bot. 51: 659–668, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Moran, J.A., Merbach, M.A., Livingstone, N.J., Clarke, C.M., Booth, W.E.: Termite prey specialization in the pitcher plant Nepenthes albomarginata—Evidence from stable isotope analysis. — Ann. Bot. 88: 307–311, 2001.

    Article  Google Scholar 

  • Moran, J.A., Moran, A.J.: Foliar reflectance and vector analysis reveal nutrient stress in prey-deprived pitcher (Nepenthes rafflesiana). — Int. J. Plant Sci. 159: 996–1001, 1998.

    Google Scholar 

  • Müller, P., Li, X.P., Niyogi, K.K.: Non-photochemical quenching: A response to excess light energy. — Plant Physiol. 125: 1558–1566, 2001.

    Article  PubMed  Google Scholar 

  • Nerz, J., Wistuba, A.: Five new taxa of Nepenthes (Nepenthaceae) from north and west Sumatra. — Carniv. Plant Newslett. 23: 101–114, 1994.

    Google Scholar 

  • Osunkoya, O.O., Daud, S.D., Di-Giusto, B., Wimmer, F.L., Holige, T.M.: Construction costs and physico-chemical properties of the assimilatory organs of Nepenthes species in northern Borneo. — Ann. Bot. 99: 895–906, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Pavlovič, A., Singerová, L., Demko, V., Hudák, J.: Feeding enhances photosynthetic efficiency in the carnivorous pitcher plant Nepenthes talangensis. — Ann. Bot. 104: 307–314, 2009.

    Article  PubMed  Google Scholar 

  • Schulze, W., Schulze, E.D., Pate, J.S., Gillinson, A.N.: The nitrogen supply from soils and insects during growth of the pitcher plants Nepenthes mirabilis, Cephalotus follicularis and Darlingtonia californica. — Oecologia 112: 464–471, 1997.

    Article  Google Scholar 

  • Stewart, C.N., Nilsen, E.T.: Drosera rotundifolia growth and nutrition in a natural population with special reference to the significance of insectivory. — Can. J. Bot. 70: 1409–1416, 1992.

    Google Scholar 

  • Svensson, B.M.: Competition between Sphagnum fuscum and Drosera rotundifolia: A case of eco-system engineering. — Oikos 74: 205–212. 1995.

    Article  Google Scholar 

  • Wong, S.C., Cowan, I.R., Farquhar, G.D.: Leaf conductance in relation to rate of CO2 assimilation. 1. Influence of nitrogen nutrition, phosphorus-nutrition, photon flux-density, and ambient partial pressure of CO2 during ontogeny. — Plant Physiol. 78: 821–825, 1985.

    Article  CAS  PubMed  Google Scholar 

  • Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J.H.C., Diemer, M., Flexas, J., Garnier, E., Groom, P.K., Gulias, J., Hikosaka, K., Lamont, B.B., Lee, T., Lee, W., Lusk, C., Midgley, J.J., Navas, M.L., Niinemets, Ü., Oleksyn, J., Osada, N., Poorter, H., Poot, P., Prior L., Pyankov, V.I., Roumet, C., Thomas, S.C, Tjoelker, M.G., Veneklaas, E.J., Villar, R: The worldwide leaf economic spectrum. — Nature 428: 821–827, 2004.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grant VEGA 1/0040/09. We thank Zelené údolÍ (Czech Republic) for providing the N. talangensis plants for our experiments; Martina Vašková, Daniel Hisem, and JiřÍ Květoň for IRMS analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Pavlovič.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavlovič, A., Singerová, L., Demko, V. et al. Root nutrient uptake enhances photosynthetic assimilation in prey-deprived carnivorous pitcher plant Nepenthes talangensis . Photosynthetica 48, 227–233 (2010). https://doi.org/10.1007/s11099-010-0028-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-010-0028-1

Additional keywords

Navigation