Aczel, P. (1988). *Non-well-founded sets*. Stanford: CSLI.

Boolos, G. (1971). The iterative conception of set. *Journal of Philosophy, 68*, 215–231. Reprinted in *Logic, logic, and logic*, pp. 13–29, by Boolos, 1998, Cambridge, MA: Harvard University Press.

Boolos, G. (1989). Iteration again. *Philosophical Topics, 17*, 5–21. Reprinted in *Logic, logic, and logic*, pp. 88–104, by Boolos, 1998, Cambridge, MA: Harvard University Press.

Boolos, G. (2000). Must we believe in set theory? In G. Sher & R. Tieszen (Eds.), *Between logic and intuition: Essays in honor of Charles Parsons* (pp. 257–268). Cambridge: Cambridge University Press. Reprinted in *Logic, logic, and logic*, pp. 120–132, by Boolos, 1998, Cambridge, MA: Harvard University Press.

Cameron, R. (2008). Turtles all the way down: Regress, priority and fundamentality.

*Philosophical Quarterly, 58*, 1–14.

CrossRefDevlin, K. (1993). *The joy of sets. Fundamentals of contemporary set theory* (2nd ed.). New York: Springer.

Fine, K. (1994). Essence and modality. In J. Tomberlin (Ed.), *Philosophical perspectives 8: Logic and language* (pp. 1–16). Atascadero: Ridgeview.

Fine, K. (1995). Ontological dependence. *Proceedings of the Aristotelian Society, 95*, 269–290.

Gödel, K. (1947). What is Cantor’s continuum problem? *American Mathematical Monthly, 54*, 515–525. Reprinted in *Collected works II*, pp. 176–187, by Gödel, 1990, Oxford: Oxford University Press.

Gödel, K. *(1951). Some basic theorems on the foundations of mathematics and their implications. In K. Gödel, *Collected works III* (pp. 304–323). Oxford: Oxford University Press, 1995.

Hallett, M. (1984). *Cantorian set theory and limitation of size*. Oxford: Clarendon Press.

Horwich, P. (1998).

*Truth* (2nd ed.). Oxford: Clarendon Press.

CrossRefJech, T. (2003). *Set theory. The third millennium edition*. Berlin: Springer.

Linnebo, Ø. (2008). Structuralism and the notion of dependence. *Philosophical Quarterly, 58*, 59–79.

Lowe, E. J. (2003). Individuation. In M. Loux & D. Zimmerman (Eds.), *Oxford handbook of metaphysics* (pp. 75–95). Oxford: Oxford University Press.

Lowe, E. J. (2005). Ontological dependence. In E. N. Zalta (Ed.),

*Stanford encyclopedia of philosophy (Fall 2008 Edition)*.

http://plato.stanford.edu/archives/fall2008/entries/dependence-ontological.

Lowe, E. J. (2007). Sortals and the individuation of objects.

*Mind and Language, 22*, 514–533.

CrossRefMaddy, P. (2007). *Second philosophy. A naturalistic method*. New York: Oxford University Press.

Parsons, C. (2008). *Mathematical thought and its objects*. Cambridge: Cambridge University Press.

Paseau, A. (2007). Boolos on the justification of set theory.

*Philosophia Mathematica, 15*, 30–53.

CrossRefPotter, M. (2004).

*Set theory and its philosophy*. Oxford: Oxford University Press.

CrossRefPriest, G. (2006). *Doubt truth to be a liar*. New York: Oxford University Press.

Resnik, M. (1997). *Mathematics as a science of patterns*. Oxford: Clarendon Press.

Rieger, A. (2009). Paradox,

ZF, and the axiom of foundation. In P. Clark, D. DeVidi, & M. Hallett (Eds.),

*Essays in honour of John L. Bell*. Springer, Netherlands.

http://eprints.gla.ac.uk/3810/.

Schaffer, J. (2009). On what grounds what. In: D. Chalmers, D. Manley, & R. Wasserman (Eds.), *Metametaphysics* (pp. 347–383). Oxford: Oxford University Press.

Shapiro, S. (1997). *Philosophy of mathematics: Structure and ontology*. New York: Oxford University Press.

Shapiro, S. (2000). *Thinking about mathematics*. New York: Oxford University Press.

Shapiro, S. (2006). Structure and identity. In F. MacBride (Ed.), *Identity and modality* (pp. 109–145). Oxford: Oxford University Press.

Shapiro, S. (2008). Identity, indiscernibility, and *ante rem* structuralism: The tale of *i* and −*i*. *Philosophia Mathematica, 16*, 1–26.

Wang, H. (1974). *From mathematics to philosophy*. London: Routledge and Kegan Paul.