Skip to main content
Log in

Types of abduction in tool behavior

  • Published:
Phenomenology and the Cognitive Sciences Aims and scope Submit manuscript

Abstract

Tool-use behavior is currently one of the most intriguing and widely debated topics in cognitive neuroscience. Different accounts of our ability to use tools have been proposed. In the first part of the paper we review the most prominent interpretations and suggest that none of these accounts, considered in itself, is sufficient to explain tool use. In the second part of the paper we disentangle three different types of reasoning on tools, characterized by a different distribution of motor and cognitive ingredients. At the conceptual level, these types of reasoning reflect the distinction between three types of abductive inference as they are described in semiotic studies. At the functional level, we suggest that these types of reasoning on tools may correspond to different mental processes, possibly implemented in different regions of the left inferior parietal lobe. This proposal can account for the different interpretations commonly associated with the role of the left parietal cortex in tool use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. Interestingly, the concept of tool selection adopted in the literature is mainly limited to purely functional considerations, while in our daily life tool selection is also driven by an additional series of affective reasons, including aesthetic and sentimental ones. However, these additional elements are intrinsically part of any decision-making process and not only of those concerning tools and, accordingly, they will not be taken into account henceforth. We thank an anonymous reviewer for noticing this often-neglected aspect of tool selection.

  2. Instructions of use can exist only for familiar tools. Presumably they specify the prototypical action associated with the tool as, for example, screwing for a screwdriver, hammering for a hammer, and pinching and pulling for pincers.” ((Goldenberg and Hagmann 1998); p.582)

  3. “Mechanical problem-solving” and “technical reasoning” will be used as synonyms henceforth.

  4. Such a general description is intended to characterize our mental activities at a very general and conceptual level, but it does not necessarily apply to the very psychological level, or to the level of the neural implementation.

  5. For example, while the use of a hammer is typically due to our recessive knowledge of the standing properties of the hammer (e.g. the hardness of its head) and the nail (its rigidity), our use of the remote is not justified by the recessive knowledge of its properties (we just know it works that way, but we don’t why it works that way) and, as a consequence, it does not represent a case of intelligent tool use. Recessive knowledge concerns both action-related and mechanical constraints because it “regulates the way in which your awareness of the position of the nail affects your modulation of the variable properties of the tool – just how hard you swing when you see that the nail is nearly in” (Campbell 2011; p.172–173).

References

  • Ahn, W., & Kalish, C. (2000). The role of mechanism beliefs in causal reasoning. In R. Wilson & F. Keil (Eds.), Cognition and explanation (pp. 199–226). MIT Press.

  • Baber, C. (2003). Cognition and tool use. Forms of engagement in human and animal use of tools. London: Taylor and Francis.

    Book  Google Scholar 

  • Bartlett, F. (1958). Thinking. New York: Basic Books.

    Google Scholar 

  • Bernstein, N. (1967). The co-ordination and regulation of movements. Oxford: Pergamon Press.

    Google Scholar 

  • Binkofski, F., Dohle, C., Posse, S., Stephan, K. M., Hefter, H., Seitz, R. J., & Freund, H. J. (1998). Human anterior intraparietal area subserves prehension: a combined lesion and functional MRI activation study. Neurology, 50(5), 1253–9.

    Article  Google Scholar 

  • Bonfantini, M. (1983). Abduction, a priori, brain: for a research program. Versus, 34, 3–11.

    Google Scholar 

  • Bonfantini, M., & Proni, G. (1980). To guess or not to guess? Scienze Umane, 6, 249–265.

    Google Scholar 

  • Borghi, A. M., & Riggio, L. (2015). Stable and variable affordances are both automatic and flexible. Frontiers in Human Neuroscience, 9, 351. doi:10.3389/fnhum.2015.00351.

    Article  Google Scholar 

  • Brandi, M.-L., Wohlschläger, A., Sorg, C., & Hermsdörfer, J. (2014). The neural correlates of planning and executing actual tool use. Journal of Neuroscience, 34(39), 13183–94.

    Article  Google Scholar 

  • Buxbaum, L. J., Shapiro, A. D., & Coslett, H. B. (2014a). Critical brain regions for tool-related and imitative actions: a componential analysis. Brain, 137(Pt 7), 1971–85.

    Article  Google Scholar 

  • Buxbaum, L. J., Shapiro, A. D., & Coslett, H. B. (2014b). Reply: Apraxia: a gestural or a cognitive disorder? Brain, 1–3.

  • Campbell, J. (2011). Why do language use and tool use both count as manifestations of intelligence? In M. C. Teresa, H. Christoph, & B. Stephen (Eds.), Tool use and causal cognition (pp. 169–182). Oxford: Oxford University Press.

    Chapter  Google Scholar 

  • Caruana, F., Avanzini, P., Sartori, I., Pelliccia, V., Casaceli, G., Lo Russo, G., Orban, G. A. (2014). The specificity of the supramarginal tool use observation area in intracerebral recordings. In SfN Abstract (p. 334.15).

  • Cattaneo, L., Caruana, F., Jezzini, A., & Rizzolatti, G. (2009). Representation of goal and movements without overt motor behavior in the human motor cortex: a transcranial magnetic stimulation study. Journal of Neuroscience, 29(36), 11134–11138.

    Article  Google Scholar 

  • Chao, L. L., & Martin, A. (2000). Representation of manipulable man-made objects in the dorsal stream. NeuroImage, 12(4), 478–84.

    Article  Google Scholar 

  • Chemero, A. (2009). Radical embodied cognitive science. Cambridge: MIT Press.

    Google Scholar 

  • Cutting, J. E. (1982). Two ecological perspectives: Gibson vs. Shaw and Turvey. The American Journal of Psychology, 95(2), 1999–222.

    Article  Google Scholar 

  • Dreyfus, H. (2002). Intelligence without representation – Merleau-Ponty’s critique of mental representation. The relevance of phenomenology to scientific explanation. Phenomenology and the Cognitive Sciences, 1, 367–383.

    Article  Google Scholar 

  • Fogassi, L., & Luppino, G. (2005). Motor functions of the parietal lobe. Current Opinion in Neurobiology, 15(6), 626–31.

    Article  Google Scholar 

  • Gallese, V. (2005). Embodied simulation: from neurons to phenomenal experience. Phen Cogn Sci, 4(1), 23–48.

    Article  Google Scholar 

  • Gallese, V., & Lakoff, G. (2005). The brain’s concepts: the role of the Sensory-motor system in conceptual knowledge. Cognitive Neuropsychology, 22(3), 455–79.

    Article  Google Scholar 

  • Gallivan, J. P., Mclean, D. A., Valyear, K. F., & Culham, J. C. (2013). Decoding the neural mechanisms of human tool use, 1–29.

  • Gardiner, A. K., Bjorklund, D. F., Greif, M. L., & Gray, S. K. (2012). Choosing and using tools: prior experience and task difficulty influence preschoolers’ tool-use strategies. Cognitive Development, 27(3), 240–254.

    Article  Google Scholar 

  • Goldenberg, G. (2009). Apraxia and the parietal lobes. Neuropsychologia, 47(6), 1449–59.

    Article  Google Scholar 

  • Goldenberg, G. (2013). Apraxia: The Cognitive side of motor control. Oxford University Press.

  • Goldenberg, G., & Hagmann, S. (1998). Tool use and mechanical problem solving in apraxia. Neuropsychologia, 36(7), 581–9.

    Article  Google Scholar 

  • Goldenberg, G., & Spatt, J. (2009). The neural basis of tool use. Brain, 132(Pt 6), 1645–55.

    Article  Google Scholar 

  • Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and action. Trends in Neurosciences, 15, 20–25.

    Article  Google Scholar 

  • Grafton, S. T., Fadiga, L., Arbib, M. A., & Rizzolatti, G. (1997). Premotor cortex activation during observation and naming of familiar tools. NeuroImage, 236(6), 231–236.

    Article  Google Scholar 

  • Greif, M. L., & Needham, A. (2011). The Development of Human Tool Use Early in Life. In T. McCornack, C. Hoerl, & S. Butterfill (Eds.), Tool Use and Causal Cognition (pp. 51–68).

  • Hermsdörfer, J. (2014). Role of manipulation knowledge in routine tool use. Cortex, 57, 292–293.

    Article  Google Scholar 

  • Hermsdorfer, J., Li, Y., Randerath, J., Goldenberg, G., & Johannsen, L. (2012). Tool use without a tool: kinematic characteristics of pantomiming as compared to actual use and the effect of brain damage. Experimental Brain Research, 218, 201–214.

    Article  Google Scholar 

  • Hermsdorfer, J., Li, Y., Randerath, J., & Goldenberg, G. (2013). Tool use kinematics across different modes of execution. Implications for action representation and apraxia. Cortex, 49, 184–199.

    Article  Google Scholar 

  • Inoue, K., Kawashima, R., Sugiura, M., Ogawa, A., Schormann, T., Zilles, K., & Fukuda, H. (2001). Activation in the ipsilateral posterior parietal cortex during tool use: a PET study. NeuroImage, 14(6), 1469–75.

    Article  Google Scholar 

  • Iriki, A., Tanaka, M., & Iwamura, Y. (1996). Coding of modified body schema during tool use by macaque postcentral neurones. Neuroreport, 7(14), 2325–30.

    Article  Google Scholar 

  • Jacob, P., & Jeannerod, M. (2003). Ways of Seeing – The Scope and Limits of Visual Cognition. Oxford University Press.

  • Jeannerod, M., Arbib, M. A., Rizzolatti, G., & Sakata, H. (1995). Grasping objects: the cortical mechanisms of visuomotor transformation. Trends in Neurosciences, 18(7), 314–20.

    Article  Google Scholar 

  • Johnson-Frey, S. H. (2003). What’s so special about human tool use? Neuron, 39(2), 201–4.

    Article  Google Scholar 

  • Johnson-Frey, S. H. (2004). The neural bases of complex tool use in humans. Trends in Cognitive Science, 8(2), 71–8.

    Article  Google Scholar 

  • Johnson-Frey, S. H., Newman-Norlund, R., & Grafton, S. T. (2005). A distributed left hemisphere network active during planning of everyday tool use skills. Cerebral Cortex, 15(6), 681–95.

    Article  Google Scholar 

  • Lewis, J. W., Brefczynski, J. A., Phinney, R. E., Janik, J. J., & DeYoe, E. (2005). Distinct cortical pathways for processing tool versus animal sounds. Journal of Neuroscience, 25, 5148–5158.

    Article  Google Scholar 

  • Maravita, A., & Iriki, A. (2004). Tools for the body (schema). Trends in Cognitive Science, 8(2), 79–86.

    Article  Google Scholar 

  • McCormack, T., Hoerl, C., & Butterfill, S. (2011). Tool Use and Causal Cognition: An Introduction. In T. McCormack, C. Hoerl, & S. Butterfill (Eds.), Tool Use and Causal Cognition. Oxford University Press.

  • Merleau-Ponty, M. (1962). Phenomenology of perception. London and New York: Routledge and Kegan Paul.

    Google Scholar 

  • Okada, T., Tanaka, S., Nakai, T., Nishizawa, S., Inui, T., Sadato, N., & Konishi, J. (2000). Naming of animals and tools: a functional magnetic resonance imaging study of categorical differences in the human brain areas commonly used for naming visually presented objects. Neuroscience Letters, 296(1), 33–6.

    Article  Google Scholar 

  • Orban, G. A., & Caruana, F. (2014). The neural basis of human tool use. Front Psych, 5, 310.

    Google Scholar 

  • Osiurak, F. (2013). Apraxia of tool use is not a matter of affordances. Frontiers in Human Neuroscience, 7, 890.

    Article  Google Scholar 

  • Osiurak, F. (2014). What neuropsychology tells us about human tool use? The four constraints theory (4CT): mechanics, space, time, and effort. Neuropsychology Review, 24(2), 88–115.

    Article  Google Scholar 

  • Osiurak, F., Jarry, C., & Le Gall, D. (2010). Grasping the affordances, understanding the reasoning : toward a dialectical theory of human tool use franc. Psychological Review, 117(2), 517–540.

    Article  Google Scholar 

  • Peeters, R. R., Rizzolatti, G., & Orban, G. A. (2013). Functional properties of the left parietal tool use region. NeuroImage, 78, 83–93.

    Article  Google Scholar 

  • Peirce, C. S. (1878). Deduction, induction, and hypothesis. Popular Science Monthly, 13, 470–482.

    Google Scholar 

  • Peirce, C. S. (1997). Pragmatism as a Principle and Method of Right Thinking: The 1903 Harvard “Lectures on Pragmatism”, State University of New York Press.

  • Peirce, C. S., Collected Papers of Charles Sanders Peirce, vols. 1–6, 1931–1935, Charles Hartshorne and Paul Weiss, eds., vols. 7–8, 1958, Arthur W. Burks, ed., Harvard University Press, Cambridge, MA.

  • Pellicano, A., Thill, S., Ziemke, T., & Binkofski, F. (2011). Affordances, adaptive tool use and grounded cognition. Fronti Psych, 2, 53.

    Google Scholar 

  • Preston, B. (1998). Cognition and tool use. Mind and Language, 13(4), 513–547.

    Article  Google Scholar 

  • Rizzolatti, G., & Sinigaglia, C. (2010). The functional role of the parieto-frontal mirror circuit: interpretations and misinterpretations. Nature Reviews Neuroscience, 11(4), 264–74.

    Article  Google Scholar 

  • Rochat, M. J., Caruana, F., Jezzini, A., Escola, L., Intskirveli, I., Grammont, F., & Umiltà, M. A. (2010). Responses of mirror neurons in area F5 to hand and tool grasping observation. Experimental Brain Research, 204(4), 605–16.

    Article  Google Scholar 

  • Rozzi, S., Ferrari, P. F., Bonini, L., Rizzolatti, G., & Fogassi, L. (2008). Functional organization of inferior parietal lobule convexity in the macaque monkey: electrophysiological characterization of motor, sensory and mirror responses and their correlation with cytoarchitectonic areas. European Journal of Neuroscience, 28(8), 1569–88.

    Article  Google Scholar 

  • Rumiati, R. I., Weiss, P. H., Shallice, T., Ottoboni, G., Noth, J., Zilles, K., & Fink, G. R. (2004). Neural basis of pantomiming the use of visually presented objects. NeuroImage, 21(4), 1224–31.

    Article  Google Scholar 

  • Schmidt, R. A. (1975). A schema theory of discrete motor skill learning. Psychological Review, 82, 225–260.

    Article  Google Scholar 

  • Schmidt, R. A. (1982). The schema concept. In J. A. S. Kelso (Ed.), Human motor behavior. New Jersey: Lawrence Erlbaum Associates Inc.

    Google Scholar 

  • Spence, C. (2011). Tool-use and the representation of peripersonal space in humans. In Tool Use and Causal Cognition. Oxford University Press.

  • Sunderland, A., Wilkins, L., Dineen, R., & Dawson, S. E. (2013). Tool-use and the left hemisphere: what is lost in ideomotor apraxia? Brain and Cognition, 81(2), 183–92.

    Article  Google Scholar 

  • Umiltà, M. A., Escola, L., Intskirveli, I., Grammont, F., Rochat, M., Caruana, F., & Rizzolatti, G. (2008). When pliers become fingers in the monkey motor system. PNAS, 105(6), 2209–13.

    Article  Google Scholar 

  • Valyear, K. F., Cavina-Pratesi, C., Stiglick, A. J., & Culham, J. C. (2007). Does tool-related fMRI activity within the intraparietal sulcus reflect the plan to grasp? NeuroImage, 36(Suppl 2), T94–T108.

    Article  Google Scholar 

  • Withagen, R., de Poel, H. J., Araújo, D., & Pepping, G.-J. (2012). Affordances can invite behavior: reconsidering the relationship between affordances and agency. New Ideas in Psychology, 30(2), 250–258.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Katrin Heimann and Corrado Sinigaglia for valuable comments on a previous version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caruana Fausto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fausto, C., Valentina, C. Types of abduction in tool behavior. Phenom Cogn Sci 16, 255–273 (2017). https://doi.org/10.1007/s11097-015-9450-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11097-015-9450-y

Keywords

Navigation