Skip to main content

Advertisement

Log in

Continuous Transdermal Delivery of L-DOPA Based on a Self-Assembling Nanomicellar System

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

When levodopa (L-DOPA) is administered orally, it is eliminated from the body very quickly resulting in a series of sharp fluctuations in its blood concentrations. These frequent changes in blood levels are considered to be responsible for the development of late motor complications and dyskinesias, which are troubling clinical and treatment issues in Parkinson’s disease. Transdermal drug delivery is a patient-compliant method for delivering therapeutics into the systemic circulation in a continuous and controlled manner. Transdermal delivery of L-DOPA can achieve continuous dopaminergic stimulation (CDS), thus reducing motor fluctuations.

Methods

However, there are two technical difficulties in the development of a transdermal patch for L-DOPA: (a) L-DOPA is poorly soluble in most pharmaceutically-acceptable solvents, and (b) L-DOPA has a limited permeability through the skin even from saturated solutions. We have, therefore, investigated the transdermal delivery of L-DOPA using an innovative self-assembling nano-micellar system (SANS), loaded with 2% L-DOPA and 1% carbidopa.

Results

In vitro testing as well as in vivo pharmacokinetic studies (multiple-dose regimen) in rabbits have demonstrated for the first time a significantly increased percutaneous permeation and systemic absorption of L-DOPA.

Conclusions

It has therefore been proposed that either a once-daily or a twice-daily regimen could be therapeutically effective depending on the severity of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CDS:

Continuous dopaminergic stimulation

CoS/S:

Co-surfactant/surfactants ratio

DLS:

Dynamic light scattering

HPLC:

High-performance liquid chromatography

L-DOPA:

L-3,4-dihydroxyphenylalanine, levodopa

LID:

Levodopa-induced diskynesia

PBS:

Phosphate buffer saline

PD:

Parkinson’s disease

SANS:

Self-assembling nanomicellar system

TEM:

Transmission electron microscopy

TEWL:

Transepidermal water loss

References

  1. Fabbrini G, Brotchie JM, Grandas F, Nomoto M, Goetz CG. Levodopa-induced dyskinesias. Mov Disord. 2007;22:1379–89.

    Article  PubMed  Google Scholar 

  2. Gottwald MD, Aminoff MJ. Therapies for dopaminergic-induced dyskinesias in Parkinson disease. Ann Neurol. 2011;69:919–27.

    Article  CAS  PubMed  Google Scholar 

  3. Nutt JG. Continuous dopaminergic stimulation: is it the answer to the motor complications of levodopa? Mov Disord. 2007;22:1–9.

    Article  PubMed  Google Scholar 

  4. Olanow CW, Obeso JA, Stocchi F. Continuous dopamine-receptor treatment of Parkinson's disease: scientific rationale and clinical implications. Lancet Neurol. 2006;5:677–87.

    Article  CAS  PubMed  Google Scholar 

  5. Antonini A. Continuous dopaminergic stimulation – from theory to clinical practice. Parkinsonism Relat Disord. 2007;13:S24–8.

    Article  PubMed  Google Scholar 

  6. Quinn N, Parkes JD, Marsden CD. Control of on/off phenomenon by continuous intravenous infusion of levodopa. Neurology. 1984;34:1131–6.

    Article  CAS  PubMed  Google Scholar 

  7. Stocchi F, Vacca L, Ruggieri S, Olanow CW. Intermittent versus continuous levodopa administration in patients with advanced Parkinson disease: a clinical and pharmacokinetic study. Arch Neurol. 2005;62:905–10.

    Article  PubMed  Google Scholar 

  8. Waters CH, Nausieda P, Dzyak L, Spiegel J, Rudzinska M, Silver DE, Tsurkalenko ES, Kell S, Hsu A, Khanna S. Gupta S. Long-term treatment with extended-release Carbidopa-levodopa (IPX066) in early and advanced Parkinson’s disease: a 9-month open-label extension trial. CNS Drugs. 2015;29:341–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nyholm D, Askmark H, Gomes-Trolin C, Knutson T, Lennernäs H, Nyström C, Aquilonius SM. Optimizing levodopa pharmacokinetics: intestinal infusion versus oral sustained-release tablets. Clin Neuropharmacol. 2003;26:156–63.

    Article  CAS  PubMed  Google Scholar 

  10. Antonini A, Isaias IU, Canesi M, Zibetti M, Mancini F, Manfredi L, Dal Fante M, Lopiano L, Pezzoli G. Duodenal levodopa infusion for advanced Parkinson's disease: 12-month treatment outcome. Mov Disord. 2007;15:1145–9.

    Article  Google Scholar 

  11. Antonini A, Mancini F, Canesi M, Zangaglia R, Isaias IU, Manfredi L, Pacchetti C, Zibetti M, Natuzzi F, Lopiano L, Nappi G, Pezzoli G. Duodenal levodopa infusion improves quality of life in advanced Parkinson's disease. Neurodegener Dis. 2008;5:244–6.

    Article  CAS  PubMed  Google Scholar 

  12. Honig H, Antonini A, Martinez-Martin P, Forgacs I, Faye GC, Fox T, Fox K, Mancini F, Canesi M, Odin P, Chaudhuri KR. Intrajejunal levodopa infusion in Parkinson’s disease: a pilot multicenter study of effects on nonmotor symptoms and quality of life. Mov Disord. 2009;30:1468–74.

    Article  Google Scholar 

  13. Eggert K, Schrader C, Hahn M, Stamelou M, Rüssmann A, Dengler R, Oertel W, Odin P. Continuous jejunal levodopa infusion in patients with advanced Parkinson disease: practical aspects and outcome of motor and non-motor complications. Clin Neuropharmacol. 2008;31:151–66.

    Article  CAS  PubMed  Google Scholar 

  14. Cawello W, Kim SR, Braun M, Elshoff J-P, Ikeda J, Funaki T. Pharmacokinetics, safety and tolerability of rotigotine transdermal patch in healthy Japanese and caucasian subjects. Clin Drug Investig. 2014;34:95–105.

    Article  CAS  PubMed  Google Scholar 

  15. Marras C, Lang A. Changing concepts in Parkinson disease: moving beyond the decade of the brain. Neurology. 2008;70:1996–2003.

    Article  PubMed  Google Scholar 

  16. Sintov AC, Greenberg I. Comparative percutaneous permeation study using caffeine-loaded microemulsion showing low reliability of the frozen/thawed skin models. Int J Pharm. 2014;471:516–24.

    Article  CAS  PubMed  Google Scholar 

  17. Sintov AC. Transdermal delivery of curcumin via microemulsion. Int J Pharm. 2015;481:97–103.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang D, Hamilton PD, Kao JL-F, Venkataraman S, Wooley KL, Ravi N. Formation of nanogel aggregates by an amphiphilic cholesteryl- poly(amidoamine) dendrimer in aqueous media. J Polym Sci A Polym Chem. 2007;45:2569–75.

    Article  CAS  Google Scholar 

  19. Zhang J, Dubay MR, Houtman CJ, Severtson SJ. Sulfonated amphiphilic block copolymers: synthesis, self-assembly in water, and application as stabilizer in emulsion polymerization. Macromolecules. 2009;42:5080–90.

    Article  CAS  Google Scholar 

  20. Bhattarai SR, Kc RB, Kim SY, Sharma M, Khil MS, Hwang PH, Chung GH, Kim HY. N-hexanoyl chitosan stabilized magnetic nanoparticles: implication for cellular labeling and magnetic resonance imaging. J Nanobiotechnol. 2008;6:1–9.

    Article  Google Scholar 

  21. Lou X, Wang C, He L. Core-shell au nanoparticle formation with DNA-polymer hybrid coatings using aqueous ATRP. Biomacromolecules. 2007;8:1385–90.

    Article  CAS  PubMed  Google Scholar 

  22. Jacobi U, Taube H, Schaefer UF, Sterry W, Lademann J. Comparison of four different in vitro systems to study the reservoir capacity of the stratum corneum. J Control Release. 2005;103:61–71.

    Article  CAS  PubMed  Google Scholar 

  23. Sintov AC, Botner S. Transdermal drug delivery using microemulsion and aqueous systems: influence of skin storage conditions on the in vitro permeability of diclofenac from aqueous vehicle systems. Int J Pharm. 2006;311:55–62.

    Article  CAS  PubMed  Google Scholar 

  24. Sintov AC, Greenberg I. Comparative percutaneous permeation study using caffeine-loaded microemulsion showing low reliability of the frozen/thawed skin models. Int J Pharm. 2014;471:516–24.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements and Disclosures

This work was granted the Dekker Foundation Award in Parkinson’s Disease Research through The Bachmann-Strauss Dystonia & Parkinson Foundation, Inc., New York, NY. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amnon C. Sintov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sintov, A.C., Levy, H.V. & Greenberg, I. Continuous Transdermal Delivery of L-DOPA Based on a Self-Assembling Nanomicellar System. Pharm Res 34, 1459–1468 (2017). https://doi.org/10.1007/s11095-017-2162-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-017-2162-y

KEY WORDS

Navigation