Skip to main content

Advertisement

Log in

Cyclosporine A Loaded Electrospun Poly(D,L-Lactic Acid)/Poly(Ethylene Glycol) Nanofibers: Drug Carriers Utilizable in Local Immunosuppression

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The present study aims to prepare poly(D,L-lactic acid) (PLA) nanofibers loaded by the immunosuppressant cyclosporine A (CsA, 10 wt%). Amphiphilic poly(ethylene glycol)s (PEG) additives were used to modify the hydrophobic drug release kinetics.

Methods

Four types of CsA-loaded PLA nanofibrous carriers varying in the presence and molecular weight (MW) of PEG (6, 20 and 35 kDa) were prepared by needleless electrospinning. The samples were extracted for 144 h in phosphate buffer saline or tissue culture medium. A newly developed and validated LC-MS/MS method was utilized to quantify the amount of released CsA from the carriers. In vitro cell experiments were used to evaluate biological activity.

Results

Nanofibers containing 15 wt% of PEG showed improved drug release characteristics; significantly higher release rates were achieved in initial part of experiment (24 h). The highest released doses of CsA were obtained from the nanofibers with PEG of the lowest MW (6 kDa). In vitro experiments on ConA-stimulated spleen cells revealed the biological activity of the released CsA for the whole study period of 144 h and nanofibers containing PEG with the lowest MW exhibited the highest impact (inhibition).

Conclusions

The addition of PEG of a particular MW enables to control CsA release from PLA nanofibrous carriers. The biological activity of CsA-loaded PLA nanofibers with PEG persists even after 144 h of previous extraction. Prepared materials are promising for local immunosuppression in various medical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ConA:

Concanavalin

CsA:

Cyclosporine A

HPLC:

High-performance liquid chromatography

IL-2:

Interleukin-2

LC-MS/MS:

Liquid chromatography tandem mass spectrometry

MW:

Molecular weight

PBS:

Phosphate buffer saline

PEG:

Poly(ethylene glycol)

PLA:

Poly(D,L-lactic acid)

PLGA:

Poly(lactide-co-glycolide)

SEM:

Scanning electron microscopy

References

  1. Fahr A. Cyclosporin clinical pharmacokinetics. Clin Pharmacokinet. 1993;24(6):472–95.

    Article  CAS  PubMed  Google Scholar 

  2. Karn PR, Kim HD, Kang H, Sun BK, Jin SE, Hwang SJ. Supercritical fluid-mediated liposomes containing cyclosporin A for the treatment of dry eye syndrome in a rabbit model: comparative study with the conventional cyclosporin A emulsion. Int J Nanomedicine. 2014;9:3791–800.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang X, Yi Y, Qi J, et al. Controlled release of cyclosporine A self-nanoemulsifying systems from osmotic pump tablets: near zero-order release and pharmacokinetics in dogs. Int J Pharm. 2013;452(1–2):233–40.

    Article  CAS  PubMed  Google Scholar 

  4. Aksungur P, Demirbilek M, Denkbas EB, Vandervoort JTP, Ludwig A, Unlu N. Development and characterization of cyclosporine A loaded nanoparticles for ocular drug delivery: cellular toxicity, uptake, and kinetic studies. J Control Release. 2011;151(3):286–94.

    Article  CAS  PubMed  Google Scholar 

  5. Di Tommaso C, Bourges JL, Valamanesh F, et al. Novel micelle carriers for cyclosporin A topical ocular delivery: in vivo cornea penetration, ocular distribution and efficacy studies. Eur J Pharm Biopharm. 2012;81(2):257–64.

    Article  CAS  PubMed  Google Scholar 

  6. Ansermot N, Fathi M, Veuthey JL, Desmeules J, Rudaz S, Hochstrasser D. Quantification of cyclosporine and tacrolimus in whole blood. Comparison of liquid chromatography-electrospray mass spectrometry with the enzyme multiplied immunoassay technique. Clin Biochem. 2008;41(10–11):910–3.

    Article  CAS  PubMed  Google Scholar 

  7. Tszyrsznic W, Borowiec A, Pawlowska E, et al. Two rapid ultra performance liquid chromatography/tandem mass spectrometry (UPLC/MS/MS) methods with common sample pretreatment for therapeutic drug monitoring of immunosuppressants compared to immunoassay. J Chromatogr B Analyt Technol Biomed Life Sci. 2013;928:9–15.

    Article  CAS  PubMed  Google Scholar 

  8. Ouyang J, Baeyens WR, Duan J, Delanghe J. Improvement of cyclosporin A determination in whole blood by reversed-phase high-performance liquid chromatography. Biomed Chromatogr. 2003;17(6):404–10.

    Article  CAS  PubMed  Google Scholar 

  9. Bonifacio FN, Giocanti M, Reynier JP, Lacarelle B, Nicolay A. Development and validation of HPLC method for the determination of Cyclosporin A and its impurities in Neoral capsules and its generic versions. J Pharm Biomed Anal. 2009;49(2):540–6.

    Article  CAS  PubMed  Google Scholar 

  10. Khoschsorur G, Semmelrock HJ, Rodl S, et al. Rapid, sensitive high-performance liquid chromatographic method for the determination of cyclosporin A and its metabolites M1, M17 and M21. J Chromatogr B Biomed Sci Appl. 1997;690(1–2):367–72.

    Article  CAS  PubMed  Google Scholar 

  11. Magni F, Pereira S, Leoni M, Grisenti G, Galli KM. Quantitation of cyclosporin A in whole blood by liquid chromatography/stable isotope dilution electrospray ionization mass spectrometry. J Mass Spectrom. 2001;36(6):670–6.

    Article  CAS  PubMed  Google Scholar 

  12. Zaater MF, Tahboub YR, Najib NM. Liquid chromatographic-electrospray mass spectrometric determination of cyclosporin A in human plasma. Anal Bioanal Chem. 2005;382(1):223–30.

    Article  CAS  PubMed  Google Scholar 

  13. Vollenbroeker B, Koch JH, Fobker M, Suwelack B, Hohage H, Muller U. Determination of cyclosporine and its metabolites in blood via HPLC-MS and correlation to clinically important parameters. Transplant Proc. 2005;37(4):1741–4.

    Article  CAS  PubMed  Google Scholar 

  14. Muller A, Jungen H, Iwersen-Bergmann S, Sterneck M, Andresen-Streichert H. Analysis of cyclosporin a in hair samples from liver transplanted patients. Ther Drug Monit. 2013;35(4):450–8.

    Article  PubMed  Google Scholar 

  15. Fang ZG, You BG, Chen YG, et al. Analysis of cyclosporine A and its metabolites in rat urine and feces by liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2010;878(15–16):1153–62.

    Article  CAS  PubMed  Google Scholar 

  16. Li AC, Li Y, Guirguis MS, Caldwell RG, Shou WZ. Advantages of using tetrahydrofuran-water as mobile phases in the quantitation of cyclosporin A in monkey and rat plasma by liquid chromatography-tandem mass spectrometry. J Pharm Biomed Anal. 2007;43(1):277–84.

    Article  CAS  PubMed  Google Scholar 

  17. Kai D, Liow SS, Loh XJ. Biodegradable polymers for electrospinning: towards biomedical applications. Mater Sci Eng C. 2014;45:659–70.

    Article  CAS  Google Scholar 

  18. Jayakumar R, Prabaharan M, Sudheesh Kumar PT, Nair SV, Tamura H. Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv. 2011;29(3):322–37.

    Article  CAS  PubMed  Google Scholar 

  19. Dubsky M, Kubinova S, Sirc J, et al. Nanofibers prepared by needleless electrospinning technology as scaffolds for wound healing. J Mater Sci Mater Med. 2012;23(4):931–41.

    Article  CAS  PubMed  Google Scholar 

  20. Hu X, Liu S, Zhou G, Huang Y, Xie Z, Jing X. Electrospinning of polymeric nanofibers for drug delivery applications. J Control Release. 2014;185:12–21.

    Article  CAS  PubMed  Google Scholar 

  21. Chou S-F, Carson D, Woodrow KA. Current strategies for sustaining drug release from electrospun nanofibers. J Control Release. 2015;220(Part B):584–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sebe I, Kallai-Szabo B, Zelko R, Szabo D. Polymers and formulation strategies of nanofibrous systems for drug delivery application and tissue engineering. Curr Med Chem. 2015;22(5):604–17.

    Article  CAS  PubMed  Google Scholar 

  23. Pelipenko J, Kocbek P, Kristl J. Critical attributes of nanofibers: preparation, drug loading, and tissue regeneration. Int J Pharm. 2015;484(1–2):57–74.

    Article  CAS  PubMed  Google Scholar 

  24. James R, Toti U, Laurencin C, Kumbar S. Electrospun Nanofibrous scaffolds for engineering soft connective tissues. Biomed Nanotechnol. 2011;726:243–58.

    Article  CAS  Google Scholar 

  25. Holan V, Chudickova M, Trosan P, et al. Cyclosporine A-loaded and stem cell-seeded electrospun nanofibers for cell-based therapy and local immunosuppression. J Control Release. 2011;156(3):406–12.

    Article  CAS  PubMed  Google Scholar 

  26. Zajicova A, Pokorna K, Lencova A, et al. Treatment of ocular surface injuries by limbal and mesenchymal stem cells growing on nanofiber scaffolds. Cell Transplant. 2010;19(10):1281–90.

    Article  PubMed  Google Scholar 

  27. Buschle-Diller G, Cooper J, Xie ZW, Wu Y, Waldrup J, Ren XH. Release of antibiotics from electrospun bicomponent fibers. Cellulose. 2007;14(6):553–62.

    Article  CAS  Google Scholar 

  28. Chen DW, Liao JY, Liu SJ, Chan EC. Novel biodegradable sandwich-structured nanofibrous drug-eluting membranes for repair of infected wounds: an in vitro and in vivo study. Int J Nanomedicine. 2012;7:763–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Sirc J, Kubinova S, Hobzova R, et al. Controlled gentamicin release from multi-layered electrospun nanofibrous structures of various thicknesses. Int J Nanomedicine. 2012;7:5315–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Herrmann S, Winter G, Mohl S, Siepmann F, Siepmann J. Mechanisms controlling protein release from lipidic implants: effects of PEG addition. J Control Release. 2007;118(2):161–8.

    Article  CAS  PubMed  Google Scholar 

  31. Steele TW, Huang CL, Widjaja E, Boey FY, Loo JS, Venkatraman SS. The effect of polyethylene glycol structure on paclitaxel drug release and mechanical properties of PLGA thin films. Acta Biomater. 2011;7(5):1973–83.

    Article  CAS  PubMed  Google Scholar 

  32. Huang CL, Steele TWJ, Widjaja E, Boey FYC, Venkatraman SS, Loo JSC. The influence of additives in modulating drug delivery and degradation of PLGA thin films. NPG Asia Mater. 2013;5:e54.

    Article  CAS  Google Scholar 

  33. Jirsák O, inventor, Lukáš D, Kotek V, Martinová L, Chaloupek J, assignees. A method of nanofibres production from a polymer solution using electrostatic spinning and a device for carrying out the method. United States patent 20060290031. 2004 Sept 8.

  34. Subbiah T, Bhat GS, Tock RW, Parameswaran S, Ramkumar SS. Electrospinning of nanofibers. J Appl Polym Sci. 2005;96:557–69.

    Article  CAS  Google Scholar 

  35. Zhang Y, Lim CT, Ramakrishna S, Huang ZM. Recent development of polymer nanofibers for biomedical and biotechnological applications. J Mater Sci-Mater Med. 2005;16:933–46.

    Article  CAS  PubMed  Google Scholar 

  36. Hrib J, Sirc J, Hobzova R, et al. Nanofibers for drug delivery - incorporation and release of model molecules, influence of molecular weight and polymer structure. Beilstein J Nanotechnol. 2015;6:1939–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kaswan RL. Intraocular penetration of topically applied cyclosporine. Transplant Proc. 1988;20(2 Suppl 2):650–5.

    CAS  PubMed  Google Scholar 

  38. Cejkova J, Cejka C, Trosan P, Zajicova A, Sykova E, Holan V. Treatment of alkali-injured cornea by cyclosporine A-loaded electrospun nanofibers - an alternative mode of therapy. Exp Eye Res. 2016;147:128–37.

    Article  CAS  PubMed  Google Scholar 

  39. Hajkova M, Javorkova E, Zajicova A, Trosan P, Holan V, Krulova M. A local application of mesenchymal stem cells and cyclosporine A attenuates immune response by a switch in macrophage phenotype. J Tissue Eng Regen Med. 2015;29 doi:10.1002/term.2044.

Download references

Acknowledgments and Disclosures

This work was supported by the Charles University in Prague [project number 307115 and SVV260440], the Grant Agency of the Czech Republic [project number 16-04863S] and the Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Program II [Project BIOCEV-FAR LQ1604] and by the project “BIOCEV” [CZ.1.05/1.1.00/02.0109]. The authors thank to Nanovia Ltd. for cooperation in needleless electrospinning.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuzana Bosakova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sirc, J., Hampejsova, Z., Trnovska, J. et al. Cyclosporine A Loaded Electrospun Poly(D,L-Lactic Acid)/Poly(Ethylene Glycol) Nanofibers: Drug Carriers Utilizable in Local Immunosuppression. Pharm Res 34, 1391–1401 (2017). https://doi.org/10.1007/s11095-017-2155-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-017-2155-x

KEY WORDS

Navigation