Skip to main content

Advertisement

Log in

Multiple Lipid Nanoparticles (MLN), a New Generation of Lipid Nanoparticles for Drug Delivery Systems: Lamivudine-MLN Experimental Design

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

An optimized methodology for the development of a new generation of lipid nanoparticles, the multiple lipid nanoparticles (MLN) is described. MLN have characteristics between nanostructured lipid carriers (NLC) and multiple emulsions (W/O/W), but without the outer aqueous phase.

Methods

The production is based on a hot homogenization method combined with high shear and ultrasonication. The antiretroviral agent lamivudine (3TC), was loaded in the MLN. For comparison purposes, NLC-3TC formulation was also developed and physico-chemically characterized by the same parameters as MLN-3TC. The development and optimization of MLN and NLC formulations were supported by a Quality by Design (QbD) approach.

Results

The MLN-3TC formulation exhibited a size of about 450 nm, polydispersity <0.3 and negative zeta potential > −20 mV. Furthermore, the morphology assessed by TEM showed a structure with multiples aqueous vacuoles. MLN-3TC was physically stable for at least 45 days, had low cytotoxicity and drug release studies showed a sustained and controlled release of 3TC under gastric and plasma-simulated conditions (at pH 7.4 for about 45 h).

Conclusions

The optimized formulations present suitable profiles for oral administration. Overall, the results reveal that MLN present higher loading capacity and storage stability than NLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

3TC:

Lamivudine

ANOVA:

Analysis of variance

AP:

Aqueous phase

BCS:

Biopharmaceutical classification system

DLS:

Dynamic light scattering

DMSO:

Dimethyl sulfoxide

DOE:

Design of experiments

EE:

Entrapment efficiency

EPC:

Egg phosphatidylcholine

FBS:

Fetal bovine serum

FMEA:

Failure modes and effects analysis

HIV:

Human immunodeficiency virus

HLB:

Hydrophilic-lipophilic balance

IC50 :

Half maximal inhibitory concentration

LC:

Loading capacity

LL:

Liquid lipid

LNP:

Lipid nanoparticles

MLN:

Multiple lipid nanoparticles

MLP:

Multiple lipid particles

MTT:

Methylthiazoletetrazolium

NLC:

Nanostructured lipid carriers

NPs:

Nanoparticles

NRTI:

Reverse transcriptase inhibitors

PDI:

Polydispersity index

QbD:

Quality by design

RS:

Response surface

RT:

Room temperature

SL:

Solid lipid

SLN:

Solid lipid nanoparticles

TEM:

Transmission electron microscopy

W/O/W:

Water/oil/water

Zeta:

Zeta potential

References

  1. Battaglia L, Gallarate M. Lipid nanoparticles: state of the art, new preparation methods and challenges in drug delivery. Expert Opin Drug Deliv. 2012;9(5):497–508.

    Article  CAS  PubMed  Google Scholar 

  2. Das S, Chaudhury A, PharmSciTech A. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech. 2011;12(1):62–76.

    Article  CAS  PubMed  Google Scholar 

  3. Pardeike J, Hommoss A, Müller RH. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharm. 2009;366(1–2):170–84.

    Article  CAS  PubMed  Google Scholar 

  4. Severino P, Andreani T, Macedo AS, Fangueiro JF, Santana MHA, Silva AM, Souto EB. Current state-of-art and new trends on lipid nanoparticles (SLN and NLC) for oral drug delivery. J Drug Deliv. 2012;2012:10–0.

  5. Gasco MR. Method for producing solid lipid microspheres having a narrow size distribution. In.: Google Patents. 1993.

  6. Lucks S, Müller R. Medication vehicles made of solid lipid particles (solid lipid nanospheres - sln). In.: Google Patents. 1996.

  7. Ali Khan A, Mudassir J, Mohtar N, Darwis Y. Advanced drug delivery to the lymphatic system: lipid-based nanoformulations. Int J Nanomedicine. 2013;8:2733–44.

    PubMed  Google Scholar 

  8. Muchow M, Maincent P, Müller RH. Lipid nanoparticles with a solid matrix (SLN®, NLC®, LDC®) for oral drug delivery. Drug Dev Ind Pharm. 2008;34(12):1394–405.

    Article  CAS  PubMed  Google Scholar 

  9. Zhao G, Hu C, Sun R, Ni S, Li Q, Xia Q. Development of novel composite antioxidant multiple lipid particles from combination of W/O/W multiple emulsions and solid lipid nanoparticles. Eur J Lipid Sci Technol. 2015;117(7):1056–65.

    Article  CAS  Google Scholar 

  10. Chaturvedi SP, Kumar V. Production techniques of lipid nanoparticles: a review. Res J Pharm, Biol Chem Sci. 2012;3(3):16.

    Google Scholar 

  11. ICH. Quality risk management Q9. In.: International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use; 2005.

  12. ICH. Pharmaceutical development - Q8(R2). In.: International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use; 2009.

  13. Benício de Barros Neto Roy Edward Bruns ISS, Bookman. Como fazer experimentos: Bookman; 2010.

  14. ICH. Pharmaceutical quality system - Q10. In. http://www.fda.gov/downloads/Drugs/.../Guidances/ucm073517.pdf: International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use; 2009.

  15. Maria Isabel Rodrigues AFL, Cárita. Planejamento de Experimentos e Otimização de Precessos: Cárita; 2014.

  16. Bedse G, Kumar V, Singh S. Study of forced decomposition behavior of lamivudine using LC, LC–MS/TOF and MSn. J Pharm Biomed Anal. 2009;49(1):55–63.

    Article  CAS  PubMed  Google Scholar 

  17. Strauch S, Jantratid E, Dressman JB, Junginger HE, Kopp S, Midha KK, Shah VP, Stavchansky S, Barends DM. Biowaiver monographs for immediate release solid oral dosage forms: lamivudine. J Pharm Sci. 2011;100(6):2054–63.

    Article  CAS  PubMed  Google Scholar 

  18. Lindenberg M, Kopp S, Dressman JB. Classification of orally administered drugs on the World Health Organization model list of essential medicines according to the biopharmaceutics classification system. Eur J Pharm Biopharm. 2004;58(2):265–78.

    Article  PubMed  Google Scholar 

  19. Vyas TK, Shah L, Amiji MM. Nanoparticulate drug carriers for delivery of HIV/AIDS therapy to viral reservoir sites. Expert Opin Drug Deliv. 2006;3(5):613–28.

    Article  CAS  PubMed  Google Scholar 

  20. Ferreira M, Chaves LL, Lima SAC, Reis S. Optimization of nanostructured lipid carriers loaded with methotrexate: a tool for inflammatory and cancer therapy. Int J Pharm. 2015;492(1–2):65–72.

    Article  CAS  PubMed  Google Scholar 

  21. Griffin WC. Classification of surface-active agents by “HLB”. J Soc Cosmet Chem. 1949;1:311–26.

    Google Scholar 

  22. Griffin WC. Calculation of HLB values of non-ionic surfactants. J Soc Cosmet Chem. 1954;5:249–56.

    Google Scholar 

  23. Martins S, Tho I, Reimold I, Fricker G, Souto E, Ferreira D, Brandl M. Brain delivery of camptothecin by means of solid lipid nanoparticles: formulation design, in vitro and in vivo studies. Int J Pharm. 2012;439(1–2):49–62.

    Article  CAS  PubMed  Google Scholar 

  24. Schöler N, Hahn H, Müller RH, Liesenfeld O. Effect of lipid matrix and size of solid lipid nanoparticles (SLN) on the viability and cytokine production of macrophages. Int J Pharm. 2002;231(2):167–76.

    Article  PubMed  Google Scholar 

  25. Block ID. Particle sizing by 3D cross-correlation DLS in highly scattering samples. In. http://www.lsinstruments.ch/__/frontend/handler/document.php?id=265&type=42: LS Instruments; 2010.

  26. Lippacher A, Müller RH, Mäder K. Preparation of semisolid drug carriers for topical application based on solid lipid nanoparticles. Int J Pharm. 2001;214(1–2):9–12.

    Article  CAS  PubMed  Google Scholar 

  27. Mitri K, Shegokar R, Gohla S, Anselmi C, Müller RH. Lipid nanocarriers for dermal delivery of lutein: preparation, characterization, stability and performance. Int J Pharm. 2011;414(1–2):267–75.

    Article  CAS  PubMed  Google Scholar 

  28. S-s F, Huang G. Effects of emulsifiers on the controlled release of paclitaxel (Taxol®) from nanospheres of biodegradable polymers. J Control Release. 2001;71(1):53–69.

    Article  Google Scholar 

  29. Wissing SA, Muller RH. Solid lipid nanoparticles as carrier for sunscreens: in vitro release and in vivo skin penetration. J Control Release. 2002;81(3):225–33.

    Article  CAS  PubMed  Google Scholar 

  30. Mishra PR, Shaal LA, Müller RH, Keck CM. Production and characterization of Hesperetin nanosuspensions for dermal delivery. Int J Pharm 2009;371(1–2):182–189.

  31. Souto EB, Wissing SA, Barbosa CM, Müller RH. Evaluation of the physical stability of SLN and NLC before and after incorporation into hydrogel formulations. Eur J Pharm Biopharm. 2004;58(1):83–90.

    Article  CAS  PubMed  Google Scholar 

  32. Ekambaram P, Satahali AAH, Priyanka K. Solid lipid nanoparticles: review. Scientific Reviews Chemical Communications. 2012;2(1):80–102.

    CAS  Google Scholar 

  33. Frias I, Neves AR, Pinheiro M, Reis S. Design, development, and characterization of lipid nanocarriers-based epigallocatechin gallate delivery system for preventive and therapeutic supplementation. Drug Des Devel Ther. 2016;10:3519–28.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sarmento B, Martins S, Ferreira D, Souto EB. Oral insulin delivery by means of solid lipid nanoparticles. Int J Nanomedicine. 2007;2(4):743–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Shah M, Agrawal YK, Garala K, Ramkishan A. Solid lipid nanoparticles of a water soluble drug, ciprofloxacin hydrochloride. Indian J Pharm Sci. 2012;74(5):434–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Singh S, Dobhal AK, Jain A, Pandit JK, Chakraborty S. Formulation and evaluation of solid lipid nanoparticles of a water soluble drug: zidovudine. Chem Pharm Bull. 2010;58(5):650–5.

    Article  CAS  PubMed  Google Scholar 

  37. Muller RH, Becker R, Kruss B, Peters K. Pharmaceutical nanosuspensions for medicament administration as systems with increased saturation solubility and rate of solution. In.: Google Patents; 1999.

  38. Zur Muhlen A, Mehnert W. Drug release and release mechanism of prednisolone loaded solid lipid nanoparticles. Pharmazie. 1998;53(8)

  39. Mehnert W, Mäder K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev. 2001;47(2–3):165–96.

    Article  CAS  PubMed  Google Scholar 

  40. Dubes A, Parrot-Lopez H, Abdelwahed W, Degobert G, Fessi H, Shahgaldian P, Coleman AW. Scanning electron microscopy and atomic force microscopy imaging of solid lipid nanoparticles derived from amphiphilic cyclodextrins. Eur J Pharm Biopharm. 2003;55(3):279–82.

    Article  CAS  PubMed  Google Scholar 

  41. Li Q, Du Y-Z, Yuan H, Zhang X-G, Miao J, Cui F-D, Hu F-Q. Synthesis of lamivudine stearate and antiviral activity of stearic acid-g-chitosan oligosaccharide polymeric micelles delivery system. Eur J Pharm Sci. 2010;41(3–4):498–507.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments and Disclosures

Cavalcanti and Soares-Sobrinho thank the Facepe (1316–4.03/12) and CNPq (482,954/2013–2) for financial support. Lima thanks Operação NORTE-01-0145-FEDER-000011. Nunes thanks FCT for her Investigator grant (IF/00293/2015). The authors are also grateful to Dr. Rui Fernandes (Histology and Electron Microscopy Service – Instituto de Biologia Molecular e Celular [HEMS-I3S], University of Porto). This work received financial support from the European Union (FEDER funds) and National Funds (FCT/MEC, Fundação para a Ciência e Tecnologia and Ministério da Educação e Ciência) under the Partnership Agreement PT2020 UID/MULTI/04378/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cláudia Nunes.

Electronic supplementary material

ESM 1

(PDF 1.25 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cavalcanti, S.M.T., Nunes, C., Lima, S.A.C. et al. Multiple Lipid Nanoparticles (MLN), a New Generation of Lipid Nanoparticles for Drug Delivery Systems: Lamivudine-MLN Experimental Design. Pharm Res 34, 1204–1216 (2017). https://doi.org/10.1007/s11095-017-2136-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-017-2136-0

KEY WORDS

Navigation