Skip to main content

Advertisement

Log in

Antifungal Efficacy of an Intravenous Formulation Containing Monomeric Amphotericin B, 5-Fluorocytosine, and Saline for Sodium Supplementation

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Amphotericin B (AmB) and 5-fluorocytosine (5-FC) exhibit additive to synergistic activity against systemic mycoses. Incompatibility of prescribed formulations precludes concomitant IV administration, a route with distinct advantages. Previously, we used PEG-DSPE micelles to produce a reformulation of Fungizone (AmB-SD), AmB solubilized by sodium deoxycholate, called mAmB-90. Herein, we describe a second reformulation that facilitates co-delivery of mAmB-90 and 5-FC, and evaluate the effect of PEG-DSPE micelles on the combination’s activity against Candida albicans.

Methods

We assessed the effect of 5-FC addition on the stability, in vitro toxicity, and antifungal efficacy of mAmB-90. The aggregation state and particle size of mAmB-90 combined with 5-FC (FmAmB-90) was evaluated over 48 h. Hemolytic activity was measured in vitro. Antifungal activity was determined in vitro against C. albicans. The efficacy of monotherapy and combination treatment was evaluated in a neutropenic mouse model of disseminated candidiasis.

Results

The aggregation state, particle size, and hemolytic activity of mAmB-90 were unaffected by 5-FC. While antifungal activity was similar in vitro, mAmB-90 alone and combined with 5-FC was more potent than AmB-SD in vivo.

Conclusions

Short-term stability and in vivo efficacy of our formulation suggest potential to simultaneously deliver AmB and 5-FC for potent antifungal efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

5-FC:

5-fluorocytosine

AmB:

Amphotericin B

AmB-SD:

Fungizone

FICI:

Fractional inhibitory concentration Index

FmAmB-90:

Reformulated fungizone combined with 5-fluorocytosine

mAmB-90:

Reformulated fungizone

MIC:

Minimum inhibitory concentration

PDI:

Polydispersity index

PEG-DSPE:

Poly(ethylene glycol)-distearoylphosphatidylethanolamine

SD:

Sodium deoxycholate

SDA:

Sabouraud dextrose agar

TL:

Total lysis

YPD:

Yeast peptone dextrose

References

  1. Pappas PG, Kauffman CA, Andes DR, Clancy CJ, Marr KA, Ostrosky-Zeichner L, et al. Clinical practice guideline for the management of candidiasis: 2016 update by the infectious diseases society of america. Clin Infect Dis. 2016;62(4):409–17.

    Article  Google Scholar 

  2. Medoff G, Comfort M, Kobayashi GS. Synergistic action of amphotericin B and 5-fluorocytosine against yeast-like organisms. Proc Soc Exp Biol Med. 1971;138(2):571.

    Article  CAS  Google Scholar 

  3. Montgomerie JZ, Edwards JE, Guze LB. Synergism of amphotericin B and 5-fluorocytosine for Candida species. J Infect Dis. 1975;132(1):82–6.

    Article  CAS  Google Scholar 

  4. Odds FC. Interactions among amphotericin B, 5-fluorocytosine, ketoconazole, and miconazole against pathogenic fungi in vitro. Antimicrob Agents Chemother. 1982;22(5):763–70.

    Article  CAS  Google Scholar 

  5. Scalarone GM, Mikami Y, Kurita N, Ichihara Y, Yazawa K, Miyaji M. Turbidometric characterization of the postantifungal effect - Comparative studies with amphotericin B, 5-fluorocytosine and miconazole on Candida albicans. Mycoses. 1991;34(7–8):297–302.

    CAS  PubMed  Google Scholar 

  6. Scalarone GM, Mikami Y, Kurita N, Yazawa K, Miyaji M. Comparative studies on the postantifungal effect produced by the synergistic interaction of flucytosine and amphotericin B on Candida albicans. Mycopathologia. 1992;120(3):133–8.

    Article  CAS  Google Scholar 

  7. Larsen RA, Leal MAE, Chan LS. Fluconazole compared with amphotericin B plus flucytosine for cryptococcal meningitis in AIDS - A randomized trial. Ann Intern Med. 1990;113(3):183–7.

    Article  CAS  Google Scholar 

  8. Stamm AM, Diasio RB, Dismukes WE, Shadomy S, Cloud GA, Bowles CA, et al. Toxicity of amphotericin B plus flucytosine in 194 patients with cryptococcal meningitis. Am J Med. 1987;83(2):236–42.

    Article  CAS  Google Scholar 

  9. Bennett JE. Flucytosine. Ann Intern Med. 1977;86(3):319–22.

    Article  Google Scholar 

  10. Mukherjee PK, Sheehan DJ, Hitchcock CA, Ghannoum MA. Combination treatment of invasive fungal infections. Clin Microbiol Rev. 2005;18(1):163–94.

    Article  CAS  Google Scholar 

  11. Gray KC, Palacios DS, Dailey I, Endo MM, Uno BE, Wilcock BC, et al. Amphotericin primarily kills yeast by simply binding ergosterol. Proc Natl Acad Sci U S A. 2012;109(7):2234–9.

    Article  CAS  Google Scholar 

  12. Medoff G, Kobayash GS, Venkov P, Schlessi D, Kwan CN. Potentiation of rifampicin and 5-fluorocytosine as antifungal antibiotics by amphotericin B. Proc Natl Acad Sci U S A. 1972;69(1):196–9.

    Article  CAS  Google Scholar 

  13. Beggs WH, Sarosi GA. Further evidence for sequential action of amphotericin B and 5-fluorocytosine against Candida albicans. Chemotherapy. 1982;28(5):341–4.

    Article  CAS  Google Scholar 

  14. Harris BE, Manning BW, Federle TW, Diasio RB. Conversion of 5-fluorocytosine to 5-fluorouracil by human intestinal microflora. Antimicrob Agents Chemother. 1986;29(1):44–8.

    Article  CAS  Google Scholar 

  15. Vermes A, Kuijper EJ, Guchelaar HJ, Dankert J. An in vitro study on the active conversion of flucytosine to fluorouracil by microorganisms in the human intestinal microflora. Chemotherapy. 2003;49(1–2):17–23.

    Article  CAS  Google Scholar 

  16. Vermes A, Guchelaar HJ, van Kuilenburg ABP, Dankert J. 5-fluorocytosine-related bone-marrow depression and conversion to fluorouracil: a pilot study. Fundam Clin Pharmacol. 2002;16(1):39–47.

    Article  CAS  Google Scholar 

  17. Barwicz J, Christian S, Gruda I. Effects of the aggregation state of amphotericin B on its toxicity to mice. Antimicrob Agents Chemother. 1992;36(10):2310–5.

    Article  CAS  Google Scholar 

  18. Bates DW, Su L, Yu DT, Chertow GM, Seger DL, Gomes DRJ, et al. Mortality and costs of acute renal failure associated with amphotericin B therapy. Clin Infect Dis. 2001;32(5):686–93.

    Article  CAS  Google Scholar 

  19. Ostrosky-Zeichner L, Marr KA, Rex JH, Cohen SH. Amphotericin B: Time for a new “gold standard”. Clin Infect Dis. 2003;37(3):415–25.

    Article  CAS  Google Scholar 

  20. Gallis HA, Drew RH, Pickard WW. Amphotericin-B - 30 years of clinical experience. Rev Infect Dis. 1990;12(2):308–29.

    Article  CAS  Google Scholar 

  21. Gruda I, Dussault N. Effect of the aggregation state of amphotericin B on its interaction with ergosterol. Biochem Cell Biol. 1988;66(3):177–83.

    Article  CAS  Google Scholar 

  22. Gruda I, Milette D, Brother M, Kobayashi GS, Medoff G, Brajtburg J. Structure-activity study of inhibition of amphotericin B (Fungizone) binding to sterols, toxicity to cells, and lethality to mice by esters of sucrose. Antimicrob Agents Chemother. 1991;35(1):24–8.

    Article  CAS  Google Scholar 

  23. Tancrede P, Barwicz J, Jutras S, Gruda I. The effect of surfactants on the aggregation state of amphotericin B. Biochim Biophys Acta. 1990;1030(2):289–95.

    Article  CAS  Google Scholar 

  24. Diezi TA, Takemoto JK, Davies NM, Kwon GS. Pharmacokinetics and nephrotoxicity of amphotericin B-incorporated poly(ethylene glycol)-block-poly(n-hexyl stearate L-aspartamide) micelles. J Pharm Sci. 2011;100(6):2064–70.

    Article  CAS  Google Scholar 

  25. Yu BG, Okano T, Kataoka K, Sardari S, Kwon GS. In vitro dissociation of antifungal efficacy and toxicity for amphotericin B-loaded poly(ethylene oxide)-block-poly(beta-benzyl-L-aspartate) micelles. J Control Release. 1998;56(1–3):285–91.

    Article  CAS  Google Scholar 

  26. Branch RA. Prevention of amphotericin B induced renal impairment - A review on the use of sodium supplementation. Arch Intern Med. 1988;148(11):2389–94.

    Article  CAS  Google Scholar 

  27. Llanos A, Cieza J, Bernardo J, Echevarria J, Biaggioni I, Sabra R, et al. Effect of salt supplementation on amphotericin B nephrotoxicity. Kidney Int. 1991;40(2):302–8.

    Article  CAS  Google Scholar 

  28. Alvarez C, Shin DH, Kwon GS. Reformulation of fungizone by PEG-DSPE micelles: deaggregation and detoxification of amphotericin B. Pharm Res. 2016;33(9):2098–106.

    Article  CAS  Google Scholar 

  29. Bolard J, Seigneuret M, Boudet G. Interaction between phospholipid-bilayer membranes and the polyene antibiotic amphotericin B - lipid state and cholesterol content dependence. Biochim Biophys Acta. 1980;599(1):280–93.

    Article  CAS  Google Scholar 

  30. Franz R, Ruhnke M, Morschhauser J. Molecular aspects of fluconazole resistance development in Candida albicans. Mycoses. 1999;42(7–8):453–8.

    Article  CAS  Google Scholar 

  31. White RL, Burgess DS, Manduru M, Bosso JA. Comparison of three different in vitro methods of detecting synergy: Time-kill, checkerboard, and E test. Antimicrob Agents Chemother. 1996;40(8):1914–8.

    Article  CAS  Google Scholar 

  32. Arikan S, Lozano-Chiu M, Paetznick V, Rex JH. In vitro synergy of caspofungin and amphotericin B against Aspergillus and Fusarium spp. Antimicrob Agents Chemother. 2002;46(1):245–7.

    Article  CAS  Google Scholar 

  33. Klepser ME, Ernst EJ, Lewis RE, Ernst ME, Pfaller MA. Influence of test conditions on antifungal time-kill curve results: proposal for standardized methods. Antimicrob Agents Chemother. 1998;42(5):1207–12.

    Article  CAS  Google Scholar 

  34. Canton E, Peman J, Gobernado M, Viudes A, Espinel-Ingroff A. Synergistic activities of fluconazole and voriconazole with terbinafine against four Candida species determined by checkerboard, time-kill, and Etest methods. Antimicrob Agents Chemother. 2005;49(4):1593–6.

    Article  CAS  Google Scholar 

  35. Andes D, Stamsted T, Conklin R. Pharmacodynamics of amphotericin B in a neutropenic-mouse disseminated-candidiasis model. Antimicrob Agents Chemother. 2001;45(3):922–6.

    Article  CAS  Google Scholar 

  36. Goodwin ML, Drew RH. Antifungal serum concentration monitoring: an update. J Antimicrob Chemother. 2008;61(1):17–25.

    Article  CAS  Google Scholar 

  37. Andes D, Pascual A, Marchetti O. Antifungal therapeutic drug monitoring: established and emerging indications. Antimicrob Agents Chemother. 2009;53(1):24–34.

    Article  CAS  Google Scholar 

  38. Pasqualotto AC, Howard SJ, Moore CB, Denning DW. Flucytosine therapeutic monitoring: 15 years experience from the UK. J Antimicrob Chemother. 2007;59(4):791–3.

    Article  CAS  Google Scholar 

  39. Brouwer AE, van Kan HJM, Johnson E, Rajanuwong A, Teparrukkul P, Wuthiekanun V, et al. Oral versus intravenous flucytosine in patients with human immunodeficiency virus-associated cryptococcal meningitis. Antimicrob Agents Chemother. 2007;51(3):1038–42.

    Article  CAS  Google Scholar 

  40. Andes D, van Ogtrop M. In vivo characterization of the pharmacodynamics of flucytosine in a neutropenic murine disseminated candidiasis model. Antimicrob Agents Chemother. 2000;44(4):938–42.

    Article  CAS  Google Scholar 

  41. Steier Z, Vermitsky JP, Toner G, Gygax SE, Edlind T, Katiyar S. Flucytosine antagonism of azole activity versus Candida glabrata: role of transcription factor Pdr1 and multidrug transporter Cdr1. Antimicrob Agents Chemother. 2013;57(11):5543–7.

    Article  CAS  Google Scholar 

  42. Aramwit P, Bong GY, Lavasanifar A, Samuel J, Kwon GS. The effect of serum albumin on the aggregation state and toxicity of amphotericin B. J Pharm Sci. 2000;89(12):1589–93.

    Article  CAS  Google Scholar 

  43. Adams ML, Andes DR, Kwon GS. Amphotericin B encapsulated in micelles based on poly(ethylene oxide)-block-poly(L-amino acid) derivatives exerts reduced in vitro hemolysis but maintains potent in vivo antifungal activity. Biomacromolecules. 2003;4(3):750–7.

    Article  CAS  Google Scholar 

  44. Diezi TA, Kwon G. Amphotericin B/sterol co-loaded peg-phospholipid micelles: effects of sterols on aggregation state and hemolytic activity of amphotericin B. Pharm Res. 2012;29(7):1737–44.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This work was supported by the NIH (R01 AI-43346). C. Alvarez was supported by the NSF-GRFP. C. Krug was supported by the Youth Apprenticeship Program in Biotechnology, an important workforce development initiative of Dane County. Special thanks to Drs. Tim Bugni and Christina Hull for providing C. albicans K1 and C. albicans Gu5 and SC5314, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glen S. Kwon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alvarez, C., Andes, D.R., Kang, J.Y. et al. Antifungal Efficacy of an Intravenous Formulation Containing Monomeric Amphotericin B, 5-Fluorocytosine, and Saline for Sodium Supplementation. Pharm Res 34, 1115–1124 (2017). https://doi.org/10.1007/s11095-017-2121-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-017-2121-7

KEY WORDS

Navigation