Skip to main content

Advertisement

Log in

Modeling the Effect of the Selective S1P1 Receptor Modulator Ponesimod on Subsets of Blood Lymphocytes

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

This analysis aimed at describing the effect of the selective sphingosine-1-phosphate receptor 1 modulator ponesimod on lymphocyte subsets in peripheral blood. As the involvement of different lymphocyte subsets varies among different autoimmune diseases, characterizing the effect of ponesimod on these may be beneficial in better understanding treatment effects.

Methods

Three phase 1 clinical studies in healthy human subjects were pooled. Non-linear mixed-effects modeling techniques were used to study the effect of ponesimod on lymphocyte subsets such as B cells, T helper cells, T cytotoxic cells, and natural killer cells in a qualitative and quantitative manner.

Results

Indirect-response Imax models including circadian variation best described the effect of ponesimod on lymphocyte subsets. B cells and T helper cells were shown to be more affected compared to T cytotoxic cells with respect to the maximum possible reduction (100% for B and T helper cells, 95% for T cytotoxic cells) and the concentration required to reach half the maximum effect. Inter-individual variability was found to be larger for T cytotoxic compared to T helper, and B cells.

Conclusion

These first models for ponesimod on the level of lymphocyte subsets offer a valuable tool for the analysis and interpretation of results from ponesimod trials in autoimmune diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

amp:

Amplitude of the circadian rhythm

GOF:

Goodness-of-fit

IC50 :

Drug concentration required to achieve the half-maximum inhibitory effect

IIV:

Inter-individual variability

Imax :

Maximum possible drug effect (lymphocyte reduction)

IWRES:

Individual-weighted residuals

kout :

First-order rate constant describing disappearance of lymphocytes from the blood stream

pcVPC:

Prediction-corrected visual predictive check

PD:

Pharmacodynamic(s)

PK:

Pharmacokinetic(s)

Rin :

Zero-order rate describing appearance of lymphocytes in the blood stream

S1P(1) :

Sphingosine-1-phosphate (1)

SAEM:

Stochastic approximation of expectation maximization

shift:

Circadian time shift

References

  1. Piali L, Froidevaux S, Hess P, Nayler O, Bolli MH, Schlosser E, et al. The selective sphingosine 1-phosphate receptor 1 agonist ponesimod protects against lymphocyte-mediated tissue inflammation. J Pharmacol Exp Ther. 2011;337:547–56.

    Article  CAS  PubMed  Google Scholar 

  2. Brossard P, Derendorf H, Xu J, Maatouk H, Halabi A, Dingemanse J. Pharmacokinetics and pharmacodynamics of ponesimod, a selective S1P1 receptor modulator, in the first-in-human study. Br J Clin Pharmacol. 2013;76:888–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schwab SR, Pereira JP, Matloubian M, Xu Y, Huang Y, Cyster JG. Lymphocyte sequestration through S1P lyase inhibition and disruption of S1P gradients. Science. 2005;309:1735–9.

    Article  CAS  PubMed  Google Scholar 

  4. Matloubian M, Lo CG, Cinamon G, Lesneski MJ, Xu Y, Brinkmann V, et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature. 2004;427:355–60.

    Article  CAS  PubMed  Google Scholar 

  5. Vaclavkova A, Chimenti S, Arenberger P, Hollo P, Sator PG, Burcklen M, et al. Oral ponesimod in patients with chronic plaque psoriasis: a randomised, double-blind, placebo-controlled phase 2 trial. Lancet. 2014;384:2036–45.

    Article  CAS  PubMed  Google Scholar 

  6. Olsson T, Boster A, Fernandez O, Freedman MS, Pozzilli C, Bach D, et al. Oral ponesimod in relapsing-remitting multiple sclerosis: a randomised phase II trial. J Neurol Neurosurg Psychiatry. 2014;85:1198–208.

    Article  PubMed  PubMed Central  Google Scholar 

  7. ClinicalTrials.gov. Oral Ponesimod Versus Teriflunomide in Relapsing MUltiple Sclerosis (OPTIMUM), Clinicaltrials.gov. 2015.

  8. Juif PE, Kraehenbuehl S, Dingemanse J. Clinical pharmacology, efficacy, and safety aspects of sphingosine-1-phosphate receptor modulators. Expert Opin Drug Metab Toxicol. 2016; 1–17.

  9. ClinicalTrials.gov. Clinical Study to Compare the Efficacy and Safety of Ponesimod to Placebo in Subjects With Active Relapsing Multiple Sclerosis Who Are Treated With Dimethyl Fumarate (Tecfidera®) (POINT), Clinicaltrials.gov. 2016.

  10. Rosenblum MD, Remedios KA, Abbas AK. Mechanisms of human autoimmunity. J Clin Invest. 2015;125:2228–33.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Goetzl EJ, Liao JJ, Huang MC. Regulation of the roles of sphingosine 1-phosphate and its type 1 G protein-coupled receptor in T cell immunity and autoimmunity. Biochim Biophys Acta. 2008;1781:503–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mehling M, Brinkmann V, Antel J, Bar-Or A, Goebels N, Vedrine C, et al. FTY720 therapy exerts differential effects on T cell subsets in multiple sclerosis. Neurology. 2008;71:1261–7.

    Article  CAS  PubMed  Google Scholar 

  13. Hu X, Kim H, Stahl E, Plenge R, Daly M, Raychaudhuri S. Integrating autoimmune risk loci with gene-expression data identifies specific pathogenic immune cell subsets. Am J Hum Genet. 2011;89:496–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hoch M, D’Ambrosio D, Wilbraham D, Brossard P, Dingemanse J. Clinical pharmacology of ponesimod, a selective S1P(1) receptor modulator, after uptitration to supratherapeutic doses in healthy subjects. Eur J Pharma Sci : Off J Eur Fed Pharm Sci. 2014;63:147–53.

    Article  CAS  Google Scholar 

  15. Krause A, Brossard P, D’Ambrosio D, Dingemanse J. Population pharmacokinetics and pharmacodynamics of ponesimod, a selective S1P1 receptor modulator. J Pharmacokinet Pharmacodyn. 2014;41:261–78.

    Article  CAS  PubMed  Google Scholar 

  16. D’Ambrosio D, Steinmann J, Brossard P, Dingemanse J. Differential effects of ponesimod, a selective S1P1 receptor modulator, on blood-circulating human T cell subpopulations. Immunopharmacol Immunotoxicol. 2015;37:103–9.

    Article  PubMed  Google Scholar 

  17. Jurcevic S, Juif PE, Hamid C, Greenlaw R, D’Ambrosio D, Dingemanse J. Effects of multiple-dose ponesimod, a selective S1P1 receptor modulator, on lymphocyte subsets in healthy humans. Drug Des Dev Ther. 2016

  18. Mouldand DR, Upton RN. Basic concepts in population modeling, simulation, and model-based drug development. CPT: Pharmacomet Syst Pharmacol. 2012;1:e6.

    Google Scholar 

  19. Mouldand DR, Upton RN. Basic concepts in population modeling, simulation, and model-based drug development-part 2: introduction to pharmacokinetic modeling methods. CPT: Pharmacomet Syst Pharmacol. 2013;2:e38.

    Google Scholar 

  20. ClinicalTrials.gov. Clinical Study to Investigate the Biological Activity, Safety, Tolerability, and Pharmacokinetics of Ponesimod in Subjects With Symptomatic Chronic GVHD, Clinicaltrials.gov. 2015.

  21. Brossard P, Scherz M, Halabi A, Maatouk H, Krause A, Dingemanse J. Multiple-dose tolerability, pharmacokinetics, and pharmacodynamics of ponesimod, an S1P1 receptor modulator: favorable impact of dose up-titration. J Clin Pharmacol. 2014;54:179–88.

    Article  CAS  PubMed  Google Scholar 

  22. Lott D, Lehr T, Dingemanse J, Krause A. Impact of demographics, organ impairment, disease, formulation, and food on the pharmacokinetics of the selective S1P1 receptor modulator Ponesimod based on 13 clinical studies. Clin Pharmacokinet. 2016.

  23. Stevens J, Ploeger BA, Hammarlund-Udenaes M, Osswald G, van der Graaf PH, Danhof M, et al. Mechanism-based PK-PD model for the prolactin biological system response following an acute dopamine inhibition challenge: quantitative extrapolation to humans. J Pharmacokinet Pharmacodyn. 2012;39:463–77.

    Article  CAS  PubMed  Google Scholar 

  24. Yan J, Greer JM, Hull R, O’Sullivan JD, Henderson RD, Read SJ, et al. The effect of ageing on human lymphocyte subsets: comparison of males and females. Immun Ageing : I & A. 2010;7:4.

    Article  Google Scholar 

  25. Harrell FE. Regression modeling strategies: with applications to linear models, logistic regression, and survival analysis, Springer 2001.

  26. Lixoft-Incuballiance. Monolix User Guide, Orsay, France, 2014.

  27. Bergstrand M, Hooker AC, Wallin JE, Karlsson MO. Prediction-corrected visual predictive checks for diagnosing nonlinear mixed-effects models. AAPS J. 2011;13:143–51.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Holford NH. The visual predictive check - superiority to standard diagnostic (Rorschach) Plots. 2005.

  29. Holford NH. An introduction to visual predictive checks. http://holford.fmhs.auckland.ac.nz/docs/vpc-tutorial-and-datatop.pdf.

  30. R Development Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2009.

    Google Scholar 

  31. Lixoft-Incuballiance. MLXPlore: Monolix model explorer version 1.1.0, Orsay, France. 2014.

  32. Krauseand A, Lowe PJ. Visualization and communication of pharmacometric models with berkeley madonna. CPT: Pharmacomet Syst Pharmacol. 2014;3:e116.

    Google Scholar 

  33. Claes N, Dhaeze T, Fraussen J, Broux B, Van Wijmeersch B, Stinissen P, et al. Compositional changes of B and T cell subtypes during fingolimod treatment in multiple sclerosis patients: a 12-month follow-up study. PLoS One. 2014;9:e111115.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Yao Z, DuBois DC, Almon RR, Jusko WJ. Pharmacokinetic/pharmacodynamic modeling of corticosterone suppression and lymphocytopenia by methylprednisolone in rats. J Pharm Sci. 2008;97:2820–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mager DE, Lin SX, Blum RA, Lates CD, Jusko WJ. Dose equivalency evaluation of major corticosteroids: pharmacokinetics and cell trafficking and cortisol dynamics. J Clin Pharmacol. 2003;43:1216–27.

    Article  CAS  PubMed  Google Scholar 

  36. Ozbek N, Yetgin S, Tuncer AM. Effect of high-dose methylprednisolone and G-CSF treatments on lymphocyte subtypes in neutropenic children with acute lymphoblastic leukemia: a pilot study. Pediatr Hematol Oncol. 1998;15:539–44.

    Article  CAS  PubMed  Google Scholar 

  37. Stark JG, Werner S, Homrighausen S, Tang Y, Krieg M, Derendorf H, et al. Pharmacokinetic/pharmacodynamic modeling of total lymphocytes and selected subtypes after oral budesonide. J Pharmacokinet Pharmacodyn. 2006;33:441–59.

    Article  CAS  PubMed  Google Scholar 

  38. Tavares SM, Junior Wde L, Lopes ESMR. Normal lymphocyte immunophenotype in an elderly population. Rev Bras Hematol Hemoter. 2014;36:180–3.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Pan WR, Suami H, Taylor GI. Senile changes in human lymph nodes. Lymphat Res Biol. 2008;6:77–83.

    Article  PubMed  Google Scholar 

  40. Bohler T, Waiser J, Schuetz M, Neumayer HH, Budde K. FTY720 exerts differential effects on CD4+ and CD8+ T-lymphocyte subpopulations expressing chemokine and adhesion receptors. Nephrol, Dial, Transplant : Off Publ Europ Dial Transplant Assoc - Europe Renal Assoc. 2004;19:702–13.

    Article  Google Scholar 

  41. Johnson TA, Evans BL, Durafourt BA, Blain M, Lapierre Y, Bar-Or A, et al. Reduction of the peripheral blood CD56(bright) NK lymphocyte subset in FTY720-treated multiple sclerosis patients. J Immunol. 2011;187:570–9.

    Article  CAS  PubMed  Google Scholar 

  42. Lee S, Kim J, Jang B, Hur S, Jung U, Kil K, et al. Fluctuation of peripheral blood T, B, and NK cells during a menstrual cycle of normal healthy women. J Immunol. 2010;185:756–62.

    Article  CAS  PubMed  Google Scholar 

  43. ClinicalTrials.gov. Clinical study to investigate the biological activity, safety, tolerability, and pharmacokinetics of ACT-334441 in subjects with systemic Lupus Erythematosus, Clinicaltrials.gov. 2015.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Lott.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 16 kb)

ESM 2

(GIF 159 kb)

High resolution image (TIF 190 kb)

ESM 3

(GIF 153 kb)

High resolution image (TIF 189 kb)

ESM 4

(GIF 182 kb)

High resolution image (TIF 247 kb)

ESM 5

(GIF 135 kb)

High resolution image (TIF 59 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lott, D., Krause, A., Seemayer, C.A. et al. Modeling the Effect of the Selective S1P1 Receptor Modulator Ponesimod on Subsets of Blood Lymphocytes. Pharm Res 34, 599–609 (2017). https://doi.org/10.1007/s11095-016-2087-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-016-2087-x

KEY WORDS

Navigation