Skip to main content
Log in

Drug Distribution. Part 1. Models to Predict Membrane Partitioning

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Tissue partitioning is an important component of drug distribution and half-life. Protein binding and lipid partitioning together determine drug distribution.

Methods

Two structure-based models to predict partitioning into microsomal membranes are presented. An orientation-based model was developed using a membrane template and atom-based relative free energy functions to select drug conformations and orientations for neutral and basic drugs.

Results

The resulting model predicts the correct membrane positions for nine compounds tested, and predicts the membrane partitioning for n = 67 drugs with an average fold-error of 2.4. Next, a more facile descriptor-based model was developed for acids, neutrals and bases. This model considers the partitioning of neutral and ionized species at equilibrium, and can predict membrane partitioning with an average fold-error of 2.0 (n = 92 drugs).

Conclusions

Together these models suggest that drug orientation is important for membrane partitioning and that membrane partitioning can be well predicted from physicochemical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

acc:

Number of acceptors

don:

Number of donors

fum :

Fraction unbound in microsomal incubation

fup :

Unbound fraction in plasma

KL :

Association constant for drug binding to the lipid

Kp :

Tissue partition constant

L:

Amount of lipid in the tissue

NO2:

Number of NO2 groups

PBPK:

Physiologically based pharmacokinetic models

pKa,a and pKa,b:

pKa values for acids and bases are respectively

PLS:

Partial least squares

SO:

Number of S=O groups

Vss :

Steady-state volume of distribution of a drug

References

  1. Korzekwa K, Nagar S. Compartmental models for apical efflux by P-glycoprotein: part 2-a theoretical study on transporter kinetic parameters. Pharm Res. 2014;31:335–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Obach RS. Nonspecific binding to microsomes: impact on scale-up of in vitro intrinsic clearance to hepatic clearance as assessed through examination of warfarin, imipramine, and propranolol. Drug Metab Dispos. 1997;25(12):1359–69.

    CAS  PubMed  Google Scholar 

  3. Tran TH, von Moltke LL, Venkatakrishnan K, Granda BW, Gibbs MA, Obach RS, et al. Microsomal protein concentration modifies the apparent inhibitory potency of CYP3A inhibitors. Drug Metab Dispos. 2002;30(12):1441–5.

    Article  CAS  PubMed  Google Scholar 

  4. Margolis JM, Obach RS. Impact of nonspecific binding to microsomes and phospholipid on the inhibition of cytochrome P4502D6: implications for relating in vitro inhibition data to in vivo drug interactions. Drug Metab Dispos. 2003;31(5):606–11.

    Article  CAS  PubMed  Google Scholar 

  5. Obach RS, Reed-Hagen AE, Krueger SS, Obach BJ, O’Connell TN, Zandi KS, et al. Metabolism and disposition of varenicline, a selective alpha4beta2 acetylcholine receptor partial agonist, in vivo and in vitro. Drug Metab Dispos. 2006;34(1):121–30.

    Article  CAS  PubMed  Google Scholar 

  6. Austin RP, Barton P, Cockroft SL, Wenlock MC, Riley RJ. The influence of nonspecific microsomal binding on apparent intrinsic clearance, and its prediction from physicochemical properties. Drug Metab Dispos. 2002;30(12):1497–503.

    Article  CAS  PubMed  Google Scholar 

  7. Obach RS, Walsky RL, Venkatakrishnan K, Houston JB, Tremaine LM. In vitro cytochrome P450 inhibition data and the prediction of drug-drug interactions: qualitative relationships, quantitative predictions, and the rank-order approach. Clin Pharmacol Ther. 2005;78(6):582–92.

    Article  CAS  PubMed  Google Scholar 

  8. Grime K, Riley RJ. The impact of in vitro binding on in vitro-in vivo extrapolations, projections of metabolic clearance and clinical drug-drug interactions. Curr Drug Metab. 2006;7(3):251.

    Article  CAS  PubMed  Google Scholar 

  9. Obach RS. Prediction of human clearance of twenty-nine drugs from hepatic microsomal intrinsic clearance data: An examination of in vitro half-life approach and nonspecific binding to microsomes. Drug Metab Dispos. 1999;27(11):1350–9.

    CAS  PubMed  Google Scholar 

  10. Riley RJ, McGinnity DF, Austin RP. A unified model for predicting human hepatic, metabolic clearance from in vitro intrinsic clearance data in hepatocytes and microsomes. Drug Metab Dispos. 2005;33(9):1304–11.

    Article  CAS  PubMed  Google Scholar 

  11. Venkatakrishnan K, von Moltke LL, Obach RS, Greenblatt DJ. Microsomal binding of amitriptyline: effect on estimation of enzyme kinetic parameters in vitro. J Pharmacol Exp Ther. 2000;293(2):343–50.

    CAS  PubMed  Google Scholar 

  12. Austin RP, Barton P, Mohmed S, Riley RJ. The binding of drugs to hepatocytes and its relationship to physicochemical properties. Drug Metab Dispos. 2005;33(3):419–25.

    Article  CAS  PubMed  Google Scholar 

  13. Nagar S, Korzekwa K. Commentary: nonspecific protein binding versus membrane partitioning: it is not just semantics. Drug Metab Dispos. 2012;40(9):1649–52.

    Article  CAS  PubMed  Google Scholar 

  14. Hallifax D, Houston JB. Binding of drugs to hepatic microsomes: comment and assessment of current prediction methodology with recommendation for improvement. Drug Metab Dispos. 2006;34(4):724–6. author reply 727.

    Article  CAS  PubMed  Google Scholar 

  15. Poulin P, Haddad S. Microsome composition-based model as a mechanistic tool to predict nonspecific binding of drugs in liver microsomes. J Pharm Sci. 2011;100(10):4501–17.

    Article  CAS  PubMed  Google Scholar 

  16. Poulin P, Haddad S. Hepatocyte composition-based model as a mechanistic tool for predicting the cell suspension: aqueous phase partition coefficient of drugs in in vitro metabolic studies. J Pharm Sci. 2013;102(8):2806–18.

    Article  CAS  PubMed  Google Scholar 

  17. Rodgers T, Leahy D, Rowland M. Physiologically based pharmacokinetic modeling 1: predicting the tissue distribution of moderate-to-strong bases. J Pharm Sci. 2005;94(6):1259–76.

    Article  CAS  PubMed  Google Scholar 

  18. Rodgers T, Rowland M. Physiologically based pharmacokinetic modelling 2: predicting the tissue distribution of acids, very weak bases, neutrals and zwitterions. J Pharm Sci. 2006;95(6):1238–57.

    Article  CAS  PubMed  Google Scholar 

  19. Peyret T, Poulin P, Krishnan K. A unified algorithm for predicting partition coefficients for PBPK modeling of drugs and environmental chemicals. Toxicol Appl Pharmacol. 2010;249(3):197–207.

    Article  CAS  PubMed  Google Scholar 

  20. Balaz S. Modeling kinetics of subcellular disposition of chemicals. Chem Rev. 2009;109(5):1793–899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Naritomi Y, Terashita S, Kimura S, Suzuki A, Kagayama A, Sugiyama Y. Prediction of human hepatic clearance from in vivo animal experiments and in vitro metabolic studies with liver microsomes from animals and humans. Drug Metab Dispos. 2001;29(10):1316–24.

    CAS  PubMed  Google Scholar 

  22. Brown HS, Galetin A, Hallifax D, Houston JB. Prediction of in vivo drug-drug interactions from in vitro data : factors affecting prototypic drug-drug interactions involving CYP2C9, CYP2D6 and CYP3A4. Clin Pharmacokinet. 2006;45(10):1035–50.

    Article  CAS  PubMed  Google Scholar 

  23. Sykes MJ, Sorich MJ, Miners JO. Molecular modeling approaches for the prediction of the nonspecific binding of drugs to hepatic microsomes. J Chem Inf Model. 2006;46(6):2661–73.

    Article  CAS  PubMed  Google Scholar 

  24. Gertz M, Kilford PJ, Houston JB, Galetin A. Drug lipophilicity and microsomal protein concentration as determinants in the prediction of the fraction unbound in microsomal incubations. Drug Metab Dispos. 2008;36(3):535–42.

    Article  CAS  PubMed  Google Scholar 

  25. Kilford PJ, Gertz M, Houston JB, Galetin A. Hepatocellular binding of drugs: correction for unbound fraction in hepatocyte incubations using microsomal binding or drug lipophilicity data. Drug Metab Dispos. 2008;36(7):1194–7.

    Article  CAS  PubMed  Google Scholar 

  26. Heller H, Schaefer M, Schulten K. Molecular dynamics simulation of a bilayer of 200 lipids in the gel and in the liquid crystal phase. J Phys Chem. 1993;97(31):8343–60.

    Article  CAS  Google Scholar 

  27. Crivori P, Cruciani G, Carrupt PA, Testa B. Predicting blood–brain barrier permeation from three-dimensional molecular structure. J Med Chem. 2000;43(11):2204–16.

    Article  CAS  PubMed  Google Scholar 

  28. Lukacova V, Natesan S, Peng M, Tandlich R, Wang Z, Lynch S, et al. Structural determinants of drug partitioning in surrogates of phosphatidylcholine bilayer strata. Mol Pharm. 2013;10(10):3684–96.

    Article  CAS  PubMed  Google Scholar 

  29. Li H, Sun J, Sui X, Yan Z, Sun Y, Liu X, et al. Structure-based prediction of the nonspecific binding of drugs to hepatic microsomes. AAPS J. 2009;11(2):364–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This work was partially funded by NIH/NIGMS grants 1R01GM104178 and 1R01GM114369 to KK and SN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Korzekwa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOCX 18 kb)

Table S2

(DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagar, S., Korzekwa, K. Drug Distribution. Part 1. Models to Predict Membrane Partitioning. Pharm Res 34, 535–543 (2017). https://doi.org/10.1007/s11095-016-2085-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-016-2085-z

KEY WORDS

Navigation