Skip to main content
Log in

Degradation Mechanisms of Polysorbate 20 Differentiated by 18O-labeling and Mass Spectrometry

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To investigate the mechanisms of polysorbate (PS) degradation with the added objective of differentiating the hydrolysis and oxidation pathways.

Methods

Ultra-performance liquid chromatography mass spectrometry (UPLC-MS) was utilized to characterize all-laurate polysorbate 20 (PS20) and its degradants. 18O stable isotope labeling was implemented to produce 18O-labeled degradation products of all-laurate PS20 in H2 18O, with subsequent UPLC-MS analysis for location of the cleavage site on the fatty acid-containing side chain of PS20.

Results

The analysis reveals that hydrolysis of all-laurate PS20 leads to a breakdown of the ester linkage to liberate free lauric acid, showing a distinct dependence on pH. Using a hydrophilic free radical initiator, 2,2-azobis(2-amidinopropane) dihydrochloride (AAPH) to study the oxidative degradation of all-laurate PS20, we demonstrate that free lauric acid and polyoxyethylene (POE) laurate are two major decomposition products. Measurement of 18O incorporation into free lauric acid indicated that hydrolysis primarily led to 18O incorporation into free lauric acid via “acyl-cleavage” of the fatty acid ester bond. In contrast, AAPH-exposure of all-laurate PS20 produced free lauric acid without 18O-incorporation.

Conclusions

The 18O-labeling technique and unique degradant patterns of all-laurate PS20 described here provide a direct approach to differentiate the types of PS degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Scheme 2
Fig. 8
Fig. 9
Fig. 10
Scheme 3

Similar content being viewed by others

Abbreviations

AAPH:

2,2′-azobis (2-amidinopropane) dihydrochloride

CMC:

Critical micelle concentration

Di:

Di-laurate

DIA:

Data-independent acquisition

EO:

Ethylene oxide

FFA:

Free fatty acid

Mi :

Polyoxyethylene isosorbide mono-laurate

Ml :

Polyoxyethylene mono-laurate

Mono:

Mono-laurate

Ms :

Polyoxyethylene sorbitan mono-laurate

POE:

Polyoxyethylene

PS:

Polysorbate

PS20:

Polysorbate-20

RIC:

Reconstructed-ion chromatogram

Tetra:

Tetra-laurate

Tri:

Tri-laurate

UPLC-MS:

Ultra-performance liquid chromatography mass spectrometry

REFERENCES

  1. Joint F, Organization WH. Toxicological evaluation of some food additives including anticaking agents, antimicrobials, antioxidants, emulsifiers and thickening agents: evaluations: prepared by the Joint FAO/WHO Expert Committee on Food Additives, Geneva, 25 June-4 July 1973: Seventeenth Report of the Joint FAO/WHO Expert Committee on Food Additives: World Health Organization; 1974.

  2. Garidel P, Hoffmann C, Blume A. A thermodynamic analysis of the binding interaction between polysorbate 20 and 80 with human serum albumins and immunoglobulins: a contribution to understand colloidal protein stabilisation. Biophys Chem. 2009;143(1):70–8.

    Article  CAS  PubMed  Google Scholar 

  3. Patapoff TW, Esue O. Polysorbate 20 prevents the precipitation of a monoclonal antibody during shear. Pharm Dev Technol. 2009;14(6):659–64.

    Article  CAS  PubMed  Google Scholar 

  4. Katakam M, Bell LN, Banga AK. Effect of surfactants on the physical stability of recombinant human growth hormone. J Pharm Sci. 1995;84(6):713–6.

    Article  CAS  PubMed  Google Scholar 

  5. Krielgaard L, Jones LS, Randolph TW, Frokjaer S, Flink JM, Manning MC, et al. Effect of tween 20 on freeze‐thawing‐and agitation‐induced aggregation of recombinant human factor XIII. J Pharm Sci. 1998;87(12):1593–603.

    Article  Google Scholar 

  6. Jones L, Bam NB, Randolph TW, editors. Surfactant-stabilized protein formulations: a review of protein-surfactant interactions and novel analytical methodologies. ACS Symposium Series. Washington, DC: American Chemical Society; 1997. p 1974–.

  7. Kerwin BA. Polysorbates 20 and 80 used in the formulation of protein biotherapeutics: structure and degradation pathways. J Pharm Sci. 2008;97(8):2924–35.

    Article  CAS  PubMed  Google Scholar 

  8. Convention USP. United States Pharmacopeia; USP 36 NF; 2013. Vol. 31, p. 2160–65.

  9. Zhang R, Wang Y, Tan L, Zhang H, Yang M. Analysis of Polysorbate 80 and its Related Compounds by RP-HPLC with ELSD and MS Detection. J Chromatogr Sci. 2012;50(7):598–607.

    Article  CAS  PubMed  Google Scholar 

  10. Cumme GA, Blume E, Bublitz R, Hoppe H, Horn A. Composition analysis of detergents of the polyoxyethylene type: comparison of thin-layer chromatography, reversed-phase chromatography and matrix-assisted laser desorption/ionization mass spectrometry. J Chromatogr A. 1997;791(1):245–53.

    Article  Google Scholar 

  11. Frison-Norrie S, Sporns P. Investigating the molecular heterogeneity of polysorbate emulsifiers by MALDI-TOF MS. J Agric Food Chem. 2001;49(7):3335–40.

    Article  CAS  PubMed  Google Scholar 

  12. Li Y, Hewitt D, Lentz YK, Ji JA, Zhang TY, Zhang K. Characterization and Stability Study of Polysorbate 20 in Therapeutic Monoclonal Antibody Formulation by Multidimensional Ultrahigh-Performance Liquid Chromatography–Charged Aerosol Detection–Mass Spectrometry. Anal Chem. 2014;86(10):5150–7.

    Article  CAS  PubMed  Google Scholar 

  13. Kishore RS, Pappenberger A, Dauphin IB, Ross A, Buergi B, Staempfli A, et al. Degradation of polysorbates 20 and 80: Studies on thermal autoxidation and hydrolysis. J Pharm Sci. 2011;100(2):721–31.

    Article  CAS  PubMed  Google Scholar 

  14. Kishore RS, Kiese S, Fischer S, Pappenberger A, Grauschopf U, Mahler H-C. The degradation of polysorbates 20 and 80 and its potential impact on the stability of biotherapeutics. Pharm Res. 2011;28(5):1194–210.

    Article  CAS  PubMed  Google Scholar 

  15. Borisov OV, Ji JA, Wang YJ. Oxidative Degradation of Polysorbate Surfactants Studied by Liquid Chromatography–Mass Spectrometry. J Pharm Sci. 2015;104(3):1005–18.

    Article  CAS  PubMed  Google Scholar 

  16. Hewitt D, Alvarez M, Robinson K, Ji J, Wang YJ, Kao Y-H, et al. Mixed-mode and reversed-phase liquid chromatography–tandem mass spectrometry methodologies to study composition and base hydrolysis of polysorbate 20 and 80. J Chromatogr A. 2011;1218(15):2138–45.

    Article  CAS  PubMed  Google Scholar 

  17. Yao J, Dokuru DK, Noestheden M, Park SS, Kerwin BA, Jona J, et al. A quantitative kinetic study of polysorbate autoxidation: the role of unsaturated fatty acid ester substituents. Pharm Res. 2009;26(10):2303–13.

    Article  CAS  PubMed  Google Scholar 

  18. Hvattum E, Yip WL, Grace D, Dyrstad K. Characterization of polysorbate 80 with liquid chromatography mass spectrometry and nuclear magnetic resonance spectroscopy: Specific determination of oxidation products of thermally oxidized polysorbate 80. J Pharm Biomed Anal. 2012;62:7–16.

    Article  CAS  PubMed  Google Scholar 

  19. Bates TR, Nightingale CH, Dixon E. Kinetics of hydrolysis of polyoxyethylene (20) sorbitan fatty acid ester surfactants. J Pharm Pharmacol. 1973;25(6):470–7.

    Article  CAS  PubMed  Google Scholar 

  20. Labrenz SR. Ester hydrolysis of polysorbate 80 in mAb drug product: evidence in support of the hypothesized risk after the observation of visible particulate in mAb formulations. J Pharm Sci. 2014;103(8):2268–77.

    Article  CAS  PubMed  Google Scholar 

  21. Plou FJ, Ferrer M, Nuero OM, Calvo MV, Alcalde M, Reyes F, et al. Analysis of Tween 80 as an esterase/lipase substrate for lipolytic activity assay. Biotechnol Tech. 1998;12(3):183–6.

    Article  CAS  Google Scholar 

  22. Donbrow M, Azaz E, Pillersdorf A. Autoxidation of polysorbates. J Pharm Sci. 1978;67(12):1676–81.

    Article  CAS  PubMed  Google Scholar 

  23. Cao X, Fesinmeyer RM, Pierini CJ, Siska CC, Litowski JR, Brych S, et al. Free fatty acid particles in protein formulations, Part 1: microspectroscopic Identification. J Pharm Sci. 2015;104(2):433–46.

    Article  CAS  PubMed  Google Scholar 

  24. Siska CC, Pierini CJ, Lau HR, Latypov RF, Fesinmeyer RM, Litowski JR. Free Fatty Acid particles in protein formulations, part 2: contribution of polysorbate raw material. J Pharm Sci. 2015;104(2):447–56.

    Article  CAS  PubMed  Google Scholar 

  25. Niki E. Free radical initiators as source of water-or lipid-soluble peroxyl radicals. Methods Enzymol. 1990;186:100–8.

    Article  CAS  PubMed  Google Scholar 

  26. Smith MB, March J. March’s advanced organic chemistry: reactions, mechanisms, and structure. Wiley; 2007.

  27. Jencks WP. Catalysis in chemistry and enzymology. Dover; 1987.

  28. Redington RL. Kinetics of oxygen-18 exchange between carboxylic acids and water. J Phys Chem. 1976;80(3):229–35.

    Article  CAS  Google Scholar 

  29. Borisov OV, Ji JA, Wang YJ, Vega F, Ling VT. Toward understanding molecular heterogeneity of polysorbates by application of liquid chromatography–mass spectrometry with computer-aided data analysis. Anal Chem. 2011;83(10):3934–42.

    Article  CAS  PubMed  Google Scholar 

  30. Tihanyi K, Vastag M. Solubility, delivery and ADME problems of drugs and drug-candidates. Bentham Science Publishers; 2011.

  31. Herbert J, Lauder I. Oxygen Exchange during Esterification. Nature. 1938;142:954–5.

    Article  CAS  Google Scholar 

  32. Baer BR, Kunze KL, Rettie AE. Mechanism of formation of the ester linkage between heme and Glu310 of CYP4B1: 18O protein labeling studies. Biochemistry. 2007;46(41):11598–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Murphy RC, Clay KL. Preparation of labeled molecules by exchange with oxygen-18 water. Methods Enzymol. 1990;193:338–48.

    Article  CAS  PubMed  Google Scholar 

  34. Murphy RC, Clay KL. Synthesis and back exchange of 18O labeled amino acids for use as internal standards with mass spectrometry. Biol Mass Spectrom. 1979;6(7):309–14.

    Article  CAS  Google Scholar 

  35. Yao X, Freas A, Ramirez J, Demirev PA, Fenselau C. Proteolytic 18O labeling for comparative proteomics: model studies with two serotypes of adenovirus. Anal Chem. 2001;73(13):2836–42.

    Article  CAS  PubMed  Google Scholar 

  36. Selmer T, Buckel W. Oxygen Exchange between Acetate and the Catalytic Glutamate Residue in Glutaconate CoA-transferase from Acidaminococcus fermentans. Implications for the mechanism of CoA-ester hydrolysis. J Biol Chem. 1999;274(30):20772–8.

    Article  CAS  PubMed  Google Scholar 

  37. Ronsein GE, Oliveira MC, Miyamoto S, Medeiros MH, Di Mascio P. Tryptophan Oxidation by Singlet Molecular Oxygen [O2 (1Δg)]: Mechanistic Studies Using 18O-Labeled Hydroperoxides, Mass Spectrometry, and Light Emission Measurements. Chem Res Toxicol. 2008;21(6):1271–83.

    Article  CAS  PubMed  Google Scholar 

  38. Back JW, Notenboom V, de Koning LJ, Muijsers AO, Sixma TK, de Koster CG, et al. Identification of cross-linked peptides for protein interaction studies using mass spectrometry and 18O labeling. Anal Chem. 2002;74(17):4417–22.

    Article  CAS  PubMed  Google Scholar 

  39. Hynninen PH, Hyvärinen K. Tracing the allomerization pathways of chlorophylls by 18O-labeling and mass spectrometry. J Org Chem. 2002;67(12):4055–61.

    Article  CAS  PubMed  Google Scholar 

  40. Liu M, Cheetham J, Cauchon N, Ostovic J, Ni W, Ren D, et al. Protein isoaspartate methyltransferase-mediated 18O-labeling of isoaspartic acid for mass spectrometry analysis. Anal Chem. 2011;84(2):1056–62.

    Article  PubMed  Google Scholar 

  41. Russell GA. Deuterium-isotope Effects in the Autoxidation of Aralkyl Hydrocarbons. Mechanism of the Interaction of PEroxy Radicals1. J Am Chem Soc. 1957;79(14):3871–7.

    Article  CAS  Google Scholar 

  42. Poutsma ML. The radical stabilization energy of a substituted carbon-centered free radical depends on both the functionality of the substituent and the ordinality of the radical. J Org Chem. 2010;76(1):270–6.

    Article  PubMed  Google Scholar 

  43. Matsushige T, Koltzenburg G, Schulte‐Frohlinde D. Pulse radiolysis of aqueous solutions of acetic acid 2‐hydroxyethyl ester. Fast elimination of acetic acid from a primary radical. Ber Bunsenges Phys Chem. 1975;79(8):657–61.

    Article  CAS  Google Scholar 

  44. Koltzenburg G, Behrens G, Schulte-Frohlinde D. Fast hydrolysis of alkyl radicals with leaving groups in the β position. J Am Chem Soc. 1982;104(25):7311–2.

    Article  CAS  Google Scholar 

  45. Behrens G, Bothe E, Koltzenburg G, Schulte-Frohlinde D. Formation and structure of 1, 1-dialkoxyalkene radical cations in aqueous solution. An in situ electron spin resonance and pulse conductivity study. J Chem Soc, Perkin Trans 2. 1980(6):883–9.

  46. Behrens G, Bothe E, Koltzenburg G, Schulte-Frohlinde D. Reactions of 1, 1-dialkoxyalkene radical cations in aqueous solution with OH–, HPO4 2–, and H2 O. Electron spin resonance spectroscopic, pulse conductometric, and product analytical studies. J Chem Soc, Perkin Trans 2. 1981(1):143–54.

  47. Dobbs A, Gilbert B, Norman R. Electron spin resonance studies. Part XXXII. Information from hyperfine splittings for aliphatic radicals about shape and conformation. J Chem Soc, Perkin Trans 2. 1972(6):786–94.

  48. Gilbert B, Larkin J, Norman R. Electron spin resonance studies. Part XXXIII. Evidence for heterolytic and homolytic transformations of radicals from 1, 2-diols and related compounds. J Chem Soc, Perkin Trans 2. 1972(6):794–802.

  49. Anarjan N, Tan CP. Effects of selected polysorbate and sucrose ester emulsifiers on the physicochemical properties of astaxanthin nanodispersions. Molecules. 2013;18(1):768–77.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This work was supported by Genentech. We wish to thank Dr. Todd D. Williams of the KU Mass Spectrometry/Analytical Proteomics Laboratory for use of their instruments and guidance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Schӧneich.

Electronic supplementary material

Fig. S1-S5 show supplemental MS/MS spectra of the Peak A6 ~ A8, the fronting/tailing of the Peak B2, and the Peak B6. Fig. S6 and S7 provid isotopic compositions of free lauric acids generated duiring hydrolysis and AAPH-initiated oxidation of all-laurate PS20 at 5°C. Fig. S8 shows the quantitative analysis of the amount of free lauric acid released from all-laurate PS20 at 40°C over 24 h.

ESM 1

(DOC 20825 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Yadav, S., Demeule, B. et al. Degradation Mechanisms of Polysorbate 20 Differentiated by 18O-labeling and Mass Spectrometry. Pharm Res 34, 84–100 (2017). https://doi.org/10.1007/s11095-016-2041-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-016-2041-y

KEY WORDS

Navigation