Skip to main content
Log in

The use of Rheology Combined with Differential Scanning Calorimetry to Elucidate the Granulation Mechanism of an Immiscible Formulation During Continuous Twin-Screw Melt Granulation

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Twin screw hot melt granulation (TS HMG) is a valuable, but still unexplored alternative to continuous granulation of moisture sensitive drugs. However, knowledge of the material behavior during TS HMG is crucial to optimize the formulation, process and resulting granule properties. The aim of this study was to evaluate the agglomeration mechanism during TS HMG using a rheometer in combination with differential scanning calorimetry (DSC).

Methods

An immiscible drug-binder formulation (caffeine-Soluplus®) was granulated via TS HMG in combination with thermal and rheological analysis (conventional and Rheoscope), granule characterization and Near Infrared chemical imaging (NIR-CI).

Results

A thin binder layer with restricted mobility was formed on the surface of the drug particles during granulation and is covered by a second layer with improved mobility when the Soluplus® concentration exceeded 15% (w/w). The formation of this second layer was facilitated at elevated granulation temperatures and resulted in smaller and more spherical granules.

Conclusion

The combination of thermal and rheological analysis and NIR-CI images was advantageous to develop in-depth understanding of the agglomeration mechanism during continuous TS HMG and provided insight in the granule properties as function of process temperature and binder concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

API:

Active pharmaceutical ingredient

ATR:

Attenuated Total Reflection

CAF:

Caffeine anhydrous

CD:

Controlled deformation

DSC:

Differential scanning calorimetry

FTIR:

Fourier Transform Infrared

G*:

Complex shear modulus

G’:

Storage modulus

G”:

Loss modulus

GSD:

Granule size distribution

HMG:

Hot melt granulation

MCT:

Mercury-Cadmium-Telluride

MPT:

Metoprolol tartrate

NIR:

Near Infrared

NIR-CI:

Near Infrared chemical imaging

PEG:

Polyethylene glycol

PVA:

Polyvinyl acetate

SG:

Savitzky Golay

SLP:

Soluplus®

SNV:

Standard Normal Variate

Tg :

Glass transition temperature

Tm :

Melting temperature

TS HMG:

Twin screw hot melt granulation

References

  1. Kowalski J, Kalb O, Joshi YM, Serajuddin ATM. Application of melt granulation technology to enhance stability of a moisture sensitive immediate-release drug product. Int J Pharm. 2009;381:56–61.

    Article  CAS  PubMed  Google Scholar 

  2. Lakshman JP, Kowalski J, Vasanthavada M, Tong W-Q, Joshi YM, Serajuddin ATM. Application of melt granulation technology to enhance tabletting properties of poorly compactible high-dose drugs. J Pharm Sci. 2011;100(4):1553–65.

    Article  CAS  PubMed  Google Scholar 

  3. Vervaet C, Remon JP. Continuous granulation in the pharmaceutical industry. Chem Eng Sci. 2005;60:3949–57.

    Article  CAS  Google Scholar 

  4. Plumb K. Major challenges for the pharmaceutical industry pharmaceutical industry in the new. Pharmacia. 2004;70:1–32.

    Google Scholar 

  5. Vercruysse J, Cordoba Diaz D, Peeters E, Fonteyne M, Delaet U, Van Assche I, et al. Continuous twin screw granulation: Influence of process variables on granule and tablet quality. Eur J Pharm Biopharm. 2012;82(1):205–11.

    Article  CAS  PubMed  Google Scholar 

  6. Mu B, Thompson MR. Examining the mechanics of granulation with a hot melt binder in a twin-screw extruder. Chem Eng Sci. 2012;81:46–56.

    Article  CAS  Google Scholar 

  7. Weatherley S, Mu B, Thompson MR, Sheskey PJ, O’Donnell KP. Hot-melt granulation in a twin screw extruder: Effects of processing on formulations with caffeine and ibuprofen. J Pharm Sci. 2013;102:4330–6.

    Article  CAS  PubMed  Google Scholar 

  8. Iveson SM, Litster JD, Hapgood K, Ennis BJ. Nucleation, growth and breakage phenomena in agitated wet granulation processes: A review. Powder Technol. 2001;117(1–2):3–39.

    Article  CAS  Google Scholar 

  9. Schaefer T, Mathiesen C. Melt pelletization in a high shear mixer. VIII. Effects of binder viscosity. Int J Pharm. 1996;139:125–38.

    Article  CAS  Google Scholar 

  10. Johansen A, Schaefer T. Effects of interactions between powder particle size and binder viscosity on agglomerate growth mechanisms in a high shear mixer. Eur J Pharm Sci. 2001;12:297–309.

    Article  CAS  PubMed  Google Scholar 

  11. Abberger T, Seo A, Schaefer T. The effect of droplet size and powder particle size on the mechanisms of nucleation and growth in fluid bed melt agglomeration. Int J Pharm. 2002;249(1–2):185–97.

    Article  CAS  PubMed  Google Scholar 

  12. Patel RP, Suthar AM. Ensuring better control of granulation. Eur J Pharm Sci. 2008;21:533–43.

    Google Scholar 

  13. Eliasen H, Schaefer T, Gjelstrup Kristensen H. Effects of binder rheology on melt agglomeration in a high shear mixer. Int J Pharm. 1998;176:73–83.

    Article  CAS  Google Scholar 

  14. Ennis BJ. Theory of granulation: an engineering perspective. Handbook Pharm Granulation Technol. 2010;3:6–58.

    Google Scholar 

  15. Aho J, Boetker JP, Baldursdottir S, Rantanen J. Rheology as a tool for evaluation of melt processability of innovative dosage forms. Int J Pharm. 2015.

  16. Monteyne T, Heeze L, Oldörp K, Vervaet C, Remon J.-P, Beer TD, et al. Vibrational spectroscopy to support the link between rheology and continuous twin-screw melt granulation on molecular level: a case study. Eur J Pharm Biopharm. 2016.

  17. Gupta SS, Meena A, Parikh T, Serajuddin ATM. Investigation of thermal and viscoelastic properties of polymers relevant to hot melt extrusion - I : Polyvinlypyrrolidone and related polymers. J Excipients Food Chem. 2014;5(1):32–45.

    Google Scholar 

  18. De Graef V, Dewettinck K, Verbeken D, Foubert I. Rheological behavior of crystallizing palm oil. Eur J Lipid Sci Technol. 2006;108(10):864–70.

    Article  Google Scholar 

  19. Nunez-Regueira L, Gracia-Fernandez CA, Gomez-Barreiro S. Use of rheology, dielectric analysis and differential scanning calorimetry for gel time determination of a thermoset. Polymer. 2005;46(16):5979–85.

    Article  CAS  Google Scholar 

  20. Cruz J, Bautista M, Manuel J, Blanco M. NIR-chemical imaging study of acetylsalicylic acid in commercial tablets. Talanta. 2009;80:473–8.

    Article  CAS  PubMed  Google Scholar 

  21. Vercruysse J, Toiviainen M, Fonteyne M, Helkimo N, Ketolainen J, Juuti M, et al. Visualization and understanding of the granulation liquid mixing and distribution during continuous twin screw granulation using NIR chemical imaging. Eur J Pharm Biopharm. 2014;86(3):383–92.

    Article  CAS  PubMed  Google Scholar 

  22. Cespi M, Casettari L, Palmieri GF, Perinelli DR, Bonacucina G. Rheological characterization of polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer (Soluplus®) water dispersions. Colloid Polym Sci. 2014;292(1):235–41.

    Article  CAS  Google Scholar 

  23. Caron V, Tajber L, Corrigan OI, Healy AM. A comparison of spray drying and milling in the production of amorphous dispersions of sulfathiazole/polyvinylpyrrolidone and sulfadimidine/polyvinylpyrrolidone. Mol Pharm. 2011;8(2):532–42.

    Article  CAS  PubMed  Google Scholar 

  24. Hubert S, Briancon S, Hedoux A, Guinet Y, Paccou L, Fessi H, et al. Process induced transformations during tablet manufacturing: Phase transition analysis of caffeine using DSC and low frequency micro-Raman spectroscopy. Int J Pharm. 2011;420:76–83.

    Article  CAS  PubMed  Google Scholar 

  25. Mezger TG. The rheology handbook: for users of rotational and oscillatory rheometers, European Coatings Tech Files, Vincentz Network, 2014.

  26. Thirtha V, Lehman R, Nosker T. Morphological effects on glass transition behavior in selected immiscible blends of amorphous and semicrystalline polymers. Polymer. 2006;47(15):5392–401.

    Article  CAS  Google Scholar 

  27. Thirtha V, Lehman R, Nosker T. Glass transition phenomena in melt-processed polystyrene/polypropylene blends. Polym Eng Sci. 2005;45:1187–93.

    Article  CAS  Google Scholar 

  28. Leblanc JL. Elastomer-filler interactions and the rheology of filled rubber compounds. J Appl Polym Sci. 2000;78(8):1541–50.

    Article  CAS  Google Scholar 

  29. Paul DR, Robeson LM. Polymer nanotechnology: nanocomposites. Polymer. 2008;49(15):3187–204.

    Article  CAS  Google Scholar 

  30. Qi S, Gryczke A, Belton P, Craig DQM. Characterisation of solid dispersions of paracetamol and EUDRAGIT E prepared by hot-melt extrusion using thermal, microthermal and spectroscopic analysis. Int J Pharm. 2008;354(1–2):158–67.

    Article  CAS  PubMed  Google Scholar 

  31. He F, Wang LM, Richert R. Dynamics of supercooled liquids in the vicinity of soft and hard interfaces. Phys Rev B - Condens Matter Mater Phys. 2005;71(14):1–10.

    Article  Google Scholar 

  32. Fragiadakis D, Pissis P, Bokobza L. Glass transition and molecular dynamics in poly(dimethylsiloxane)/silica nanocom-posites. Polymer. 2005;46(16):6001–8.

    Article  CAS  Google Scholar 

  33. Tsagaropoulos A, Eisenberg G. Dynamic mechanical study of factor a ecting the two glass transition behavior of filled polymer. Similarities and differences with random ionomers. Macromolecules. 1995;28:6067–77.

    Article  CAS  Google Scholar 

  34. Li L, Zhou D, Huang D, Xue G. Double glass transition temperatures of poly(methyl methacrylate) confined in alumina nanotube templates. Macromolecules.

  35. Ash BJ, Rogers D, Wiehand CJ. Mechanical Properties of Al2O3/Polymethylmethacrylate nanocomposites. Polym Compos. 2002;1014–1025.

  36. Ash BJ, Schadler LS, Siegel RW. Glass transition behavior of alumina/polymethylmethacrylate nanocomposites. Mater Lett. 2002;55:83–7.

    Article  CAS  Google Scholar 

  37. Lanzl T. Charakterisierung von mittels dielektrischer Spektroskopie Dissertation, Ph.D. thesis, Universitat Regensburg. 2001.

  38. Fröhlich J, Niedermeier W, Luginsland HD. The effect of filler- filler and filler-elastomer interaction on rubber reinforcement. Compos A: Appl Sci Manuf. 2005;36(4):449–60.

    Article  Google Scholar 

  39. Mortezaei M, Famili MHN, Kokabi M. The role of interfacial interactions on the glass-transition and viscoelastic properties of silica/polystyrene nanocomposite. Compos Sci Technol. 2011;71(8):1039–45.

    Article  CAS  Google Scholar 

  40. Pothan LA, Oommen Z, Thomas S. Dynamic mechanical analysis of banana ber reinforced polyester composites. Compos Sci Technol. 2003;63(2):283–93.

    Article  CAS  Google Scholar 

  41. Lee KT, Ingram A, Rowson NA. Twin screw wet granulation: the study of a continuous twin screw granulator using Positron Emission Particle Tracking (PEPT) technique. Eur J Pharm Biopharm. 2012;81(3):666–73.

    Article  CAS  PubMed  Google Scholar 

  42. Medalia AI. Effective degree of immobilization of rubber occluded within carbon black aggregates. Rubber Chem Technol. 1972;45(5):1171–94.

    Article  CAS  Google Scholar 

  43. Thompson MR, Sun J. Wet granulation in a twin-screw extruder: implications of screw design. J Pharm Sci. 2010;99(4):2090–103.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

Financial support for this research from the Agency for Innovation by Science and Technology (IWT - Ph.D. fellowship Tinne Monteyne) and Fund for Scientific Research Flanders (FWO Flanders - Postdoc fellowship Severine Therese F.C. Mortier) are gratefully acknowledged. BASF is acknowledged for sending large amounts of caffeine and Soluplus®. Thermo Fisher Scientific (Karlsruhe) is appreciatively acknowledged for giving me the opportunity to use their rheometers in parallel for a long period of time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tinne Monteyne.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monteyne, T., Heeze, L., Mortier, S.T.F.C. et al. The use of Rheology Combined with Differential Scanning Calorimetry to Elucidate the Granulation Mechanism of an Immiscible Formulation During Continuous Twin-Screw Melt Granulation. Pharm Res 33, 2481–2494 (2016). https://doi.org/10.1007/s11095-016-1973-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-016-1973-6

KEY WORDS

Navigation