Skip to main content
Log in

Long-Acting Phospholipid Gel of Exenatide for Long-Term Therapy of Type II Diabetes

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to develop a sustained-release formulation of exenatide (EXT) for the long-term therapeutic efficacy in the treatment of type II diabetes.

Methods

In this study, we present an injectable phospholipid gel by mixing biocompatible phospholipid S100, medium chain triglyceride (MCT) with 85% (w/w) ethanol. A systemic pre-formulation study has been carried out to improve the stability of EXT during formulation fabrication. With the optimized formulation, the pharmacokinetic profiles in rats were studied and two diabetic animal models were employed to evaluate the therapeutic effect of EXT phospholipid gel via a single subcutaneous injection versus repeated injections of normal saline and EXT solution.

Results

With optimized formulation, sustained release of exenatide in vivo for over three consecutive weeks was observed after one single subcutaneous injection. Moreover, the pharmacodynamic study in two diabetic models justified that the gel formulation displayed a comparable hypoglycemic effect and controlled blood glucose level compared with exenatide solution treated group.

Conclusions

EXT-loaded phospholipid gel represents a promising controlled release system for long-term therapy of type II diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

DDP-IV:

Dipeptidyl peptidase IV

EMA:

European medicines agency

EXT:

Exenatide

FDA:

Food and drug administration

FITC:

Fluoresceinisothiocyanate

GLP-1:

Glucagon-like peptide-1

HP-β-CD:

Hydroxypropyl-β-cyclodextrin

MCT:

Medium chain triglyceride

PPSG:

Phospholipid-based phase separation gel

STZ:

Streptozocin

References

  1. Tilmanand D, Clark M. Global diets link environmental sustainability and human health. Nature. 2014;515:518–22.

    Article  Google Scholar 

  2. Mellitus D. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2005;28:S37.

    Article  Google Scholar 

  3. Association AD. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2010;33:S62–9.

    Article  Google Scholar 

  4. Veisehand O, Langer R. Diabetes: a smart insulin patch. Nature. 2015;524:39–40.

    Article  Google Scholar 

  5. Shivashankarand M, Mani D. A brief overview of diabetes. Int J Pharm Pharm Sci. 2011;3:22–7.

    Google Scholar 

  6. Khotand SS, Dhongade SR. Microwave assisted multicomponent synthesis of excellent antidiabetic (type 2) active thiazolidinone derivatives. Proceedings of the National Conference on Drug Designing and Discovery DDD2013 Devchand College, Arjunnagar, India; 2014. p. 77–80.

  7. Minshall ME, Oglesby AK, Wintle ME, Valentine WJ, Roze S, Palmer AJ. Estimating the long-term cost-effectiveness of exenatide in the United States: an adjunctive treatment for type 2 diabetes mellitus. Value Health. 2008;11:22–33.

    Article  PubMed  Google Scholar 

  8. Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E, Nauck M, et al. Management of hyperglycemia in type 2 diabetes: a patient-centered approach position statement of the american diabetes association (ADA) and the european association for the study of diabetes (EASD). Diabetes Care. 2012;35:1364–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Meier JJ. GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus. Nat Rev Endocrinol. 2012;8:728–42.

    Article  CAS  PubMed  Google Scholar 

  10. Sanggaard KW, Dyrlund TF, Thomsen LR, Nielsen TA, Brøndum L, Wang T, et al. Characterization of the gila monster (Heloderma suspectum suspectum) venom proteome. J Proteome. 2015;117:1–11.

    Article  CAS  Google Scholar 

  11. Clardy SM, Keliher EJ, Mohan JF, Sebas M, Benoist C, Mathis D, et al. Fluorescent exendin-4 derivatives for pancreatic β-cell analysis. Bioconjug Chem. 2013;25:171–7.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Minze MG, Klein MS, Jernigan MJ, Wise SL, Frugé K. Once‐weekly exenatide: an extended‐duration glucagon‐like peptide agonist for the treatment of type 2 diabetes mellitus. Pharmacother J Hum Pharmacol Drug Ther. 2013;33:627–38.

    Article  CAS  Google Scholar 

  13. Qi F, Wu J, Yang T, Ma G, Su Z. Mechanistic studies for monodisperse exenatide-loaded PLGA microspheres prepared by different methods based on SPG membrane emulsification. Acta Biomater. 2014;10:4247–56.

    Article  CAS  PubMed  Google Scholar 

  14. Furman BL. The development of Byetta (exenatide) from the venom of the Gila monster as an anti-diabetic agent. Toxicon. 2012;59:464–71.

    Article  CAS  PubMed  Google Scholar 

  15. Kempeand S, Mäder K. In situ forming implants — an attractive formulation principle for parenteral depot formulations. J Control Release. 2012;161:668–79.

    Article  Google Scholar 

  16. Mishra GP, Kinser R, Wierzbicki IH, Alany RG, Alani AWG. In situ gelling polyvalerolactone-based thermosensitive hydrogel for sustained drug delivery. Eur J Pharm Biopharm. 2014;88:397–405.

    Article  CAS  PubMed  Google Scholar 

  17. Guo W, Quan P, Fang L, Cun D, Yang M. Sustained release donepezil loaded PLGA microspheres for injection: preparation, in vitro and in vivo study. Asian J Pharm Sci.

  18. Qi F, Wu J, Fan Q, He F, Tian G, Yang T, et al. Preparation of uniform-sized exenatide-loaded PLGA microspheres as long-effective release system with high encapsulation efficiency and bio-stability. Colloids Surf B: Biointerfaces. 2013;112:492–8.

    Article  CAS  PubMed  Google Scholar 

  19. Kim JY, Lee H, Oh KS, Kweon S, Jeon O-c, Byun Y, et al. Multilayer nanoparticles for sustained delivery of exenatide to treat type 2 diabetes mellitus. Biomaterials. 2013;34:8444–9.

    Article  CAS  PubMed  Google Scholar 

  20. Cheng F, Maggie J, Ko Y-J, Lin M-Y, Shuen-Hsiang C. Recipe for in-situ gel, and implant, drug delivery system formed thereby. Google Patents. 2014.

  21. Patil P, Shaikh S, Shivsharan K, Shahi S. In situ gel: a novel drug delivery system. Indo Am J Pharm Res. 2014;4:5406–13.

    Google Scholar 

  22. Agarwaland P, Rupenthal ID. Injectable implants for the sustained release of protein and peptide drugs. Drug Discov Today. 2013;18:337–49.

    Article  Google Scholar 

  23. Akash MSH, Rehman K, Chen S. Polymeric-based particulate systems for delivery of therapeutic proteins. Pharm Dev Technol. 2015;1–12.

  24. Li K, Yu L, Liu X, Chen C, Chen Q, Ding J. A long-acting formulation of a polypeptide drug exenatide in treatment of diabetes using an injectable block copolymer hydrogel. Biomaterials. 2013;34:2834–42.

    Article  CAS  PubMed  Google Scholar 

  25. Wu W, Chen H, Shan F, Zhou J, Sun X, Zhang L, et al. A novel doxorubicin-loaded in situ forming gel based high concentration of phospholipid for intratumoral drug delivery. Mol Pharm. 2014;11:3378–85.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang T, Peng Q, San F-Y, Luo J-W, Wang M-X, Wu W-Q, et al. A high-efficiency, low-toxicity, phospholipids-based phase separation gel for long-term delivery of peptides. Biomaterials. 2015;45:1–9.

    Article  PubMed  Google Scholar 

  27. Kimura M, Takai M, Ishihara K. Biocompatibility and drug release behavior of spontaneously formed phospholipid polymer hydrogels. J Biomed Mater Res A. 2007;80:45–54.

    Article  PubMed  Google Scholar 

  28. Schwab M, Kessler B, Wolf E, Jordan G, Mohl S, Winter G. Correlation of in vivo and in vitro release data for rh-INFα lipid implants. Eur J Pharm Biopharm. 2008;70:690–4.

    Article  CAS  PubMed  Google Scholar 

  29. Kwak H-H, Shim W-S, Hwang S, Son M-K, Kim Y-J, Kim T-H, et al. Pharmacokinetics and efficacy of a biweekly dosage formulation of exenatide in Zucker diabetic fatty (ZDF) rats. Pharm Res. 2009;26:2504–12.

    Article  CAS  PubMed  Google Scholar 

  30. Li X-g, Li L, Zhou X, Chen Y, Ren Y-p, Zhou T-y, et al. Pharmacokinetic/pharmacodynamic studies on exenatide in diabetic rats. Acta Pharmacol Sin. 2012;33:1379–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chaturvedi P, George S, Milinganyo M, Tripathi Y. Effect of Momordica charantia on lipid profile and oral glucose tolerance in diabetic rats. Phytother Res. 2004;18:954–6.

    Article  CAS  PubMed  Google Scholar 

  32. Liang R, Li X, Shi Y, Wang A, Sun K, Liu W, et al. Effect of water on exenatide acylation in poly (lactide-co-glycolide) microspheres. Int J Pharm. 2013;454:344–53.

    Article  CAS  PubMed  Google Scholar 

  33. Montaguti P, Melloni E, Cavalletti E. Acute intravenous toxicity of dimethyl sulfoxide, polyethylene glycol 400, dimethylformamide, absolute ethanol, and benzyl alcohol in inbred mouse strains. Arzneimittelforschung. 1994;44:566–70.

    CAS  PubMed  Google Scholar 

  34. Liuand F, Urban MW. Recent advances and challenges in designing stimuli-responsive polymers. Prog Polym Sci. 2010;35:3–23.

    Article  Google Scholar 

  35. Packhaeuser C, Schnieders J, Oster C, Kissel T. In situ forming parenteral drug delivery systems: an overview. Eur J Pharm Biopharm. 2004;58:445–55.

    Article  CAS  PubMed  Google Scholar 

  36. Bakliwaland S, Pawar S. In-situ gel: new trends in controlled and sustained drug delivery system. Int J PharmTech Res. 2010;2:1398–408.

    Google Scholar 

  37. Deyand L, Attele A. Type 2 diabetes. Tradit Chin Med. 2011;231.

  38. Young AA, Gedulin BR, Bhavsar S, Bodkin N, Jodka C, Hansen B, et al. Glucose-lowering and insulin-sensitizing actions of exendin-4: studies in obese diabetic (ob/ob, db/db) mice, diabetic fatty Zucker rats, and diabetic rhesus monkeys (Macaca mulatta). Diabetes. 1999;48:1026–34.

    Article  CAS  PubMed  Google Scholar 

  39. Reed M, Meszaros K, Entes L, Claypool M, Pinkett J, Gadbois T, et al. A new rat model of type 2 diabetes: the fat-fed, streptozotocin-treated rat. Metabolism. 2000;49:1390–4.

    Article  CAS  PubMed  Google Scholar 

  40. Srinivasanand K, Ramarao P. Animal model in type 2 diabetes research: an overview. Indian J Med Res. 2007;125:451.

    Google Scholar 

  41. Wangand Q, Brubaker P. Glucagon-like peptide-1 treatment delays the onset of diabetes in 8 week-old db/db mice. Diabetologia. 2002;45:1263–73.

    Article  Google Scholar 

  42. Marchetti P, Lupi R, Del Guerra S, Bugliani M, D’Aleo V, Occhipinti M, et al. Goals of treatment for type 2 diabetes β-cell preservation for glycemic control. Diabetes Care. 2009;32:S178–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The authors are grateful for the financial support from the National S&T Major Project of China (2014ZX09507001) and Sichuan University Startup Foundation for Talents (2082204174131). The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, M., Zhang, Y., Xiang, N. et al. Long-Acting Phospholipid Gel of Exenatide for Long-Term Therapy of Type II Diabetes. Pharm Res 33, 1318–1326 (2016). https://doi.org/10.1007/s11095-016-1873-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-016-1873-9

KEY WORDS

Navigation