Skip to main content

Advertisement

Log in

Curcumin Delivery by Poly(Lactide)-Based Co-Polymeric Micelles: An In Vitro Anticancer Study

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

An Erratum to this article was published on 14 April 2016

Abstract

Purpose

This work describes the synthesis of block co-polymeric micelles, methoxy-poly(ethylene glycol)-poly(D,L-lactide) (mPEG-PLA) to encapsulate Curcumin (CUR), thereby improving the dispersibility and chemical stability of curcumin, prolonging its cellular uptake and enhancing its bioavailability.

Methods

CUR-mPEG-PLA micelles, was prepared using the thin-film hydration method and evaluated in vitro. The preparation process was optimized with a central composite design (CCD). Micelles were characterized by size, transmission electron microscopy, loading capacity, and critical micelle concentration (CMC). The cytotoxicity of CUR-mPEG-PLA micelles was investigated against murine melanoma cells, B16F10 and human breast cancer cells, MDA-MB-231.

Results

The average size of the CUR-mPEG-PLA micelles was 110 ± 5 nm with polydispersity index in the range of 0.15–0.31, and the encapsulating efficiency for CUR was 91.89 ± 1.2, and 11.06 ± 0.8% for drug-loading. Sustained release of CUR from micelles was observed with 9.73% CUR release from micelles compared to 64.24% release of free curcumin in first 6 h under sink condition. The CUR-mPEG-PLA was efficiently taken up by the cancer cells, B16F10 and MDA-MB-231. Following 24 h incubation, CUR-mPEG-PLA induced higher cytotoxicity compared to free CUR in MDA-MB-231 cell lines indicating exposure of higher dose of free CUR to cells lead to up-regulation of drug efflux mechanisms leading to decreased cell death in case of free CUR administration.

Conclusion

Our results indicate that the proposed micellar system has the potential to serve as an efficient carrier for CUR by effectively solubilizing, stabilizing and delivering the drug in a controlled manner to the cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

B16F10:

Murine melanoma cells

CCD:

Central composite design

CMC:

Critical micelle concentration

CUR:

Curcumin

DMEM:

Dulbecco’s modified Eagle’s media

DSC:

Differential scanning calorimetry

EPR:

Enhanced Permeability and Retention

FTIR:

Fourier transform infrared spectroscopy

HepG2:

Human hepatocellular carcinoma cells

MDA-MB-231:

Human breast cancer cells

mPEG:

Methoxy-poly(ethylene glycol)

mPEG-PLA:

Methoxy-poly(ethylene glycol)-poly(D,L-Lactide)

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-di-phenyltetrazolium bromide

MWCO:

Molecular weight cut-off

NMR:

Nuclear magnetic resonance

PEG:

Poly (ethylene glycol)

PLA:

Poly(lactic acid)

RPMI-1640:

Roswell Park Memorial Institute 1640 media

TEM:

Transmission electron microscope

THF:

Tetrahydrofuran

References

  1. Nishiyama N, Kataoka K. Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol Ther. 2006;112(3):630–48.

    Article  CAS  PubMed  Google Scholar 

  2. Xiong X-B, Mahmud A, Uludağ H, Lavasanifar A. Multifunctional polymeric micelles for enhanced intracellular delivery of doxorubicin to metastatic cancer cells. Pharm Res. 2008;25(11):2555–66.

    Article  CAS  PubMed  Google Scholar 

  3. LaPorte RJ. Hydrophilic polymer coatings for medical devices: CRC Press; 1997.

  4. Owens DE, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm. 2006;307(1):93–102.

    Article  CAS  PubMed  Google Scholar 

  5. Vonarbourg A, Passirani C, Saulnier P, Benoit J-P. Parameters influencing the stealthiness of colloidal drug delivery systems. Biomaterials. 2006;27(24):4356–73.

    Article  CAS  PubMed  Google Scholar 

  6. Dong Y, Feng S-S. Methoxy poly (ethylene glycol)-poly (lactide)(MPEG-PLA) nanoparticles for controlled delivery of anticancer drugs. Biomaterials. 2004;25(14):2843–9.

    Article  CAS  PubMed  Google Scholar 

  7. Yang X-Z, Dou S, Sun T-M, Mao C-Q, Wang H-X, Wang J. Systemic delivery of siRNA with cationic lipid assisted PEG-PLA nanoparticles for cancer therapy. J Control Release. 2011;156(2):203–11.

    Article  CAS  PubMed  Google Scholar 

  8. Wang Y, Yang T, Wang X, Wang J, Zhang X, Zhang Q. Targeted polymeric micelle system for delivery of combretastatin A4 to tumor vasculature in vitro. Pharm Res. 2010;27(9):1861–8.

    Article  CAS  PubMed  Google Scholar 

  9. Aggarwal BB, Kumar A, Bharti AC. Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res. 2003;23(1A):363–98.

    CAS  PubMed  Google Scholar 

  10. Anand P, Sundaram C, Jhurani S, Kunnumakkara A, Aggarwal B. Curcumin and cancer: an “old-age” disease with an “age-old” solution. Cancer Lett. 2008;267:133–64.

    Article  CAS  PubMed  Google Scholar 

  11. Kawamori T, Lubet R, Steele V, Kelloff G, Kaskey R, Rao C, et al. Chemopreventive effect of curcumin, a naturally occurring anti-inflammatory agent, during the promotion/progression stages of colon cancer. Cancer Res. 1999;59:597.

    CAS  PubMed  Google Scholar 

  12. Mohanty C, Acharya S, Mohanty AK, Dilnawaz F, Sahoo SK. Curcumin-encapsulated MePEG/PCL diblock copolymeric micelles: a novel controlled delivery vehicle for cancer therapy. Nanomedicine (Lond). 2010;5(3):433–49.

    Article  CAS  Google Scholar 

  13. Sahu A, Kasoju N, Goswami P, Bora U. Encapsulation of curcumin in Pluronic block copolymer micelles for drug delivery applications. J Biomater Appl. 2011;25(6):619–39.

    Article  CAS  PubMed  Google Scholar 

  14. Aggarwal BB, Sung B. Pharmacological basis for the role of curcumin in chronic diseases: an age-old spice with modern targets. Trends Pharmacol Sci. 2009;30(2):85–94.

    Article  CAS  PubMed  Google Scholar 

  15. Chen J, Li L, Su J, Li B, Zhang X, Chen T. Proteomic analysis of G2/M arrest triggered by natural borneol/curcumin in HepG2 cells, the importance of the reactive oxygen species-p53 pathway. J Agric Food Chem. 2015;63(28):6440–9.

    Article  CAS  PubMed  Google Scholar 

  16. Tuorkey MJ. Curcumin a potent cancer preventive agent: mechanisms of cancer cell killing. Interv Med Appl Sci. 2014;6(4):139–46.

    PubMed  PubMed Central  Google Scholar 

  17. Martin RCG, Locatelli E, Li Y, Zhang W, Li S, Monaco I, et al. Gold nanorods and curcumin-loaded nanomicelles for efficient in vivo photothermal therapy of Barrett’s esophagus. Nanomedicine. 2015;10(11):1723–33.

    Article  CAS  PubMed  Google Scholar 

  18. Mehmet H, Seta K, Bernhard S, Uwe B. Characterization of CurcuEmulsomes: nanoformulation for enhanced solubility and delivery of curcumin. J Nanobiotechnology. 2013;11:37.

    Article  Google Scholar 

  19. Mulik R, Monkkonen J, Juvonen R, Mahadik K, Paradkar A. ApoE3 mediated polymeric nanoparticles containing curcumin: apoptosis induced in vitro anticancer activity against neuroblastoma cells. Int J Pharm. 2012;437:29–41.

    Article  CAS  PubMed  Google Scholar 

  20. Raveendran R, Bhuvaneshwar G, Sharma CP. In vitro cytotoxicity and cellular uptake of curcumin-loaded Pluronic/Polycaprolactone micelles in colorectal adenocarcinoma cells. J Biomater Appl. 2013;27(7):811–27.

    Article  PubMed  Google Scholar 

  21. Letchford K, Liggins R, Burt H. Solubilization of hydrophobic drugs by methoxy poly (ethylene glycol)‐block‐polycaprolactone diblock copolymer micelles: theoretical and experimental data and correlations. J Pharm Sci. 2008;97(3):1179–90.

    Article  CAS  PubMed  Google Scholar 

  22. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises. Mol Pharm. 2007;4(6):807–18.

    Article  CAS  PubMed  Google Scholar 

  23. Sahu A, Bora U, Kasoju N, Goswami P. Synthesis of novel biodegradable and self-assembling methoxy poly (ethylene glycol)–palmitate nanocarrier for curcumin delivery to cancer cells. Acta Biomater. 2008;4(6):1752–61.

    Article  CAS  PubMed  Google Scholar 

  24. Ma Z, Haddadi A, Molavi O, Lavasanifar A, Lai R, Samuel J. Micelles of poly (ethylene oxide)‐b‐poly (ε‐caprolactone) as vehicles for the solubilization, stabilization, and controlled delivery of curcumin. J Biomed Materials Res Part A. 2008;86(2):300–10.

    Article  Google Scholar 

  25. Li L, Ahmed B, Mehta K, Kurzrock R. Liposomal curcumin with and without oxaliplatin: effects on cell growth, apoptosis, and angiogenesis in colorectal cancer. Mol Cancer Ther. 2007;6(4):1276–82.

    Article  CAS  PubMed  Google Scholar 

  26. Bisht S, Feldmann G, Soni S, Ravi R, Karikar C, Maitra A, et al. Polymeric nanoparticle-encapsulated curcumin (“nanocurcumin”): a novel strategy for human cancer therapy. J Nanobiotechnology. 2007;5(3):1–18.

    Google Scholar 

  27. Sou K, Inenaga S, Takeoka S, Tsuchida E. Loading of curcumin into macrophages using lipid-based nanoparticles. Int J Pharm. 2008;352(1):287–93.

    Article  CAS  PubMed  Google Scholar 

  28. Vemula PK, Li J, John G. Enzyme catalysis: tool to make and break amygdalin hydrogelators from renewable resources: a delivery model for hydrophobic drugs. J Am Chem Soc. 2006;128(27):8932–8.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang X, Li Y, Chen X, Wang X, Xu X, Liang Q, et al. Synthesis and characterization of the paclitaxel/MPEG-PLA block copolymer conjugate. Biomaterials. 2005;26(14):2121–8.

    Article  CAS  PubMed  Google Scholar 

  30. Zhu K, Xiangzhou L, Shilin Y. Preparation, characterization, and properties of polylactide (PLA)–poly (ethylene glycol)(PEG) copolymers: a potential drug carrier. J Appl Polym Sci. 1990;39(1):1–9.

    Article  CAS  Google Scholar 

  31. Dabholkar RD, Sawant RM, Mongayt DA, Devarajan PV, Torchilin VP. Polyethylene glycol–phosphatidylethanolamine conjugate (PEG–PE)-based mixed micelles: some properties, loading with paclitaxel, and modulation of P-glycoprotein-mediated efflux. Int J Pharm. 2006;315(1):148–57.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang Y, Zhang Q, Zha L, Yang W, Wang C, Jiang X, et al. Preparation, characterization and application of pyrene-loaded methoxy poly (ethylene glycol)–poly (lactic acid) copolymer nanoparticles. Colloid Polym Sci. 2004;282(12):1323–8.

    Article  CAS  Google Scholar 

  33. Arockiasamy S, Banik RM. Optimization of gellan gum production by Sphingomonas paucimobilis ATCC 31461 with nonionic surfactants using central composite design. J Biosci Bioeng. 2008;105(3):204–10.

    Article  CAS  PubMed  Google Scholar 

  34. Dalcin MG, Pirete MM, Lemos DA, Ribeiro EJ, Cardoso VL, de Resende MM. Evaluation of hexavalent chromium removal in a continuous biological filter with the use of central composite design (CCD). J Environ Manag. 2011;92(4):1165–73.

    Article  CAS  Google Scholar 

  35. Somasundaram S, Edmund NA, Moore DT, Small GW, Shi YY, Orlowski RZ. Dietary curcumin inhibits chemotherapy-induced apoptosis in models of human breast cancer. Cancer Res. 2002;62(13):3868–75.

    CAS  PubMed  Google Scholar 

  36. Duvoix A, Blasius R, Delhalle S, Schnekenburger M, Morceau F, Henry E, et al. Chemopreventive and therapeutic effects of curcumin. Cancer Lett. 2005;223(2):181–90.

    Article  CAS  PubMed  Google Scholar 

  37. Liu HS, Ke CS, Cheng HC, Huang CY, Su CL. Curcumin-induced mitotic spindle defect and cell cycle arrest in human bladder cancer cells occurs partly through inhibition of aurora A. Mol Pharmacol. 2011;80(4):638–46.

    Article  CAS  PubMed  Google Scholar 

  38. Ke CS, Liu HS, Yen CH, Huang GC, Cheng HC, Huang CY, et al. Curcumin-induced Aurora-A suppression not only causes mitotic defect and cell cycle arrest but also alters chemosensitivity to anticancer drugs. J Nutr Biochem. 2014;25(5):526–39.

    Article  CAS  PubMed  Google Scholar 

  39. Moses MA, Brem H, Langer R. Novel delivery systems in cancer chemotherapy. Sci Med. 2003;9:264–73.

    CAS  Google Scholar 

  40. Jain A, Jain SK. In vitro and cell uptake studies for targeting of ligand anchored nanoparticles for colon tumors. Eur J Pharm Sci. 2008;35(5):404–16.

    Article  CAS  PubMed  Google Scholar 

  41. Bhadra D, Bhadra S, Jain S, Jain N. A PEGylated dendritic nanoparticulate carrier of fluorouracil. Int J Pharm. 2003;257(1):111–24.

    Article  CAS  PubMed  Google Scholar 

  42. Yang C, Su X, Liu A, Zhang L, Yu A, Xi Y, et al. Advances in clinical study of curcumin. Curr Pharm Des. 2013;19(11):1966–73.

    CAS  PubMed  Google Scholar 

  43. Ryan JL, Heckler CE, Ling M, Katz A, Williams JP, Pentland AP, et al. Curcumin for radiation dermatitis: a randomized, double-blind, placebo-controlled clinical trial of thirty breast cancer patients. Radiat Res. 2013;180(1):34–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shuai X, Ai H, Nasongkla N, Kim S, Gao J. Micellar carriers based on block copolymers of poly (ε-caprolactone) and poly (ethylene glycol) for doxorubicin delivery. J Control Release. 2004;98(3):415–26.

    Article  CAS  PubMed  Google Scholar 

  45. Luo L, Tam J, Maysinger D, Eisenberg A. Cellular internalization of poly (ethylene oxide)-b-poly (ε-caprolactone) diblock copolymer micelles. Bioconjug Chem. 2002;13(6):1259–65.

    Article  CAS  PubMed  Google Scholar 

  46. Aryal S, Hu C-MJ, Zhang L. Polymeric nanoparticles with precise ratiometric control over drug loading for combination therapy. Mol Pharm. 2011;8(4):1401–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Savić R, Luo L, Eisenberg A, Maysinger D. Micellar nanocontainers distribute to defined cytoplasmic organelles. Science. 2003;300(5619):615–8.

    Article  PubMed  Google Scholar 

  48. Yallapu MM, Gupta BK, Jaggi M, Chauhan SC. Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells. J Colloid Interface Sci. 2010;351(1):19–29.

    Article  CAS  PubMed  Google Scholar 

  49. Shaikh J, Ankola D, Beniwal V, Singh D, Kumar MR. Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. Eur J Pharm Sci. 2009;37(3):223–30.

    Article  CAS  PubMed  Google Scholar 

  50. Mittal G, Sahana D, Bhardwaj V, Kumar MR. Estradiol loaded PLGA nanoparticles for oral administration: effect of polymer molecular weight and copolymer composition on release behavior in vitro and in vivo. J Control Release. 2007;119(1):77–85.

    Article  CAS  PubMed  Google Scholar 

  51. Anand P, Nair HB, Sung B, Kunnumakkara AB, Yadav VR, Tekmal RR, et al. Design of curcumin-loaded PLGA nanoparticles formulation with enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo. Biochem Pharmacol. 2010;79(3):330–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments and Disclosures

The work was supported in part by the grants provided by the Department of Science and Technology (CS-269/2013), and Department of Biotechnology (BT/Bio-CARe/07/10003/2013-14), Government of India to Swati Biswas. Preeti Kumari gratefully acknowledges INSPIRE (IF130703), Department of Science and Technology (DST), Ministry of Science and Technology, Government of India for awarding her with the Junior Research Fellowship. The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swati Biswas.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 245 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, P., Swami, M.O., Nadipalli, S.K. et al. Curcumin Delivery by Poly(Lactide)-Based Co-Polymeric Micelles: An In Vitro Anticancer Study. Pharm Res 33, 826–841 (2016). https://doi.org/10.1007/s11095-015-1830-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-015-1830-z

KEY WORDS

Navigation