Skip to main content

Advertisement

Log in

Anti-angiogenic Effects of Bumetanide Revealed by DCE-MRI with a Biodegradable Macromolecular Contrast Agent in a Colon Cancer Model

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To assess the antiangiogenic effect of bumetanide with dynamic contrast enhanced (DCE)-MRI and a biodegradable macromolecular MRI contrast agent.

Methods

A new polydisulfide containing macrocyclic gadolinium (Gd(III)) chelates, poly([(Gd-DOTA)-DETA]-co-DTBP) (GODP), was synthesized as a safe biodegradable macromolecular MRI contrast agent for DCE-MRI. Nude mice bearing flank HT29 colon cancer xenografts were then treated daily with either bumetanide or saline for a total of 3 weeks. DCE-MRI was performed before and after the treatment weekly. The DCE-MRI data were analyzed using the adiabiatic approximation to the tissue homogeneity (AATH) model to assess the change of tumor vascularity in response to the treatment. Immunohistochemistry (IHC) and western blot were performed to study tumor angiogenic biomarkers and hypoxia.

Results

DCE-MRI with GODP revealed that bumetanide reduced vascular permeability and plasma volume fraction by a significantly greater extent than the saline control therapy after 3 weeks of therapy. These changes were verified by the significant decline of CD31 and VEGF expression in the bumetanide treatment group. Despite a significant regression in vascularity, the tumors remained highly proliferative. Overexpression of the transcription factor HIF-1α in response to elevated hypoxia is thought to be the driving force behind the uninterrupted tumor expansion.

Conclusion

This study demonstrated the effectiveness of DCE-MRI with GODP in detecting vascular changes following the administration of bumetanide. Bumetanide has the potential to curtail growth of the tumor vasculature and can be employed in future therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AATH:

Adiabiatic approximation to the tissue homogeneity

BOC-ON:

[2-(tert-butoxycarbonyloxyimino)-2-phenylacetonitrile]

CD31:

Cluster of differentiation 31

DCE-MRI:

Dynamic contrast enhanced magnetic resonance imaging

DCM:

Dichloromethane

DETA:

diethylenetriamine

DIPEA:

N,N-diisopropylethylamine

DMF:

Dimethylformamide

DOTA:

Tetraazacyclododecanetetraacetic acid

DTBP:

Dithiobispropionic acid

DTPA:

Diethylene triamine pentaacetic acid

DTSSP:

3,3′-dithiobis(sulfosuccinimidylpropionate)

FITC:

Fluorescein isothiocyanate

FOV:

Field of view

Fp:

Blood flow

Gd:

Gadolinium

GODP:

Poly([(Gd-DOTA)-DETA]-co-DTBP)

HIF-1α:

Hypoxia inducible factor-1 α

IHC:

Immunohistochemistry

kDa:

Kilodalton

LMCM:

Low molecular weight contrast  agents

MMCM:

Macromolecular Gd-based contrast agents

NKCC1:

Na+-K+-2Cl cotransporter

PS:

Permeability-surface area product

PyBOP:

Benzotriazol-1-yl-oxytripyrrolidinophosphonium hexafluorophosphate

r1 :

Longitudinal relaxivity

r2 :

Longitudinal and transverse relaxivity

ROI:

Region of interest

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

TE:

Echo time

THF:

Tetrahydrofuran

TR:

Repetition time

VEGF:

Vascular endothelial growth factor

Vp:

Volume fraction of the plasma space

ΔSI:

Signal enhancement values

REFERENCES

  1. O’Connor JP, Jackson A, Parker GJ, Roberts C, Jayson GC. Dynamic contrast-enhanced MRI in clinical trials of antivascular therapies. Nat Rev Clin Oncol. 2012;9:167–77.

    Article  PubMed  Google Scholar 

  2. Padhani AR, Husband JE. Dynamic contrast-enhanced MRI studies in oncology with an emphasis on quantification, validation and human studies. Clin Radiol. 2001;56(8):607–20.

    Article  CAS  PubMed  Google Scholar 

  3. Kerbel RS. Tumor angiogenesis. N Engl J Med. 2008;358:2039–49.

    Article  CAS  PubMed  Google Scholar 

  4. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000;407:249–57.

    Article  CAS  PubMed  Google Scholar 

  5. Sourbron SP, Buckley DL. Tracer kinetic modelling in MRI: estimating perfusion and capillary permeability. Phys Med Biol. 2012;57:R1–33.

    Article  CAS  PubMed  Google Scholar 

  6. Koh TS, Bisdas S, Koh DM, Thng CH. Fundamentals of tracer kinetics for dynamic contrast-enhanced MRI. J Magn Reson Imaging JMRI. 2011;34:1262–76.

    Article  PubMed  Google Scholar 

  7. Feng Y, Jeong EK, Mohs AM, Emerson L, Lu ZR. Characterization of tumor angiogenesis with dynamic contrast-enhanced MRI and biodegradable macromolecular contrast agents in mice. Magn Reson Med. 2008;60:1347–52.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Brasch R, Pham C, Shames D, Roberts T, van Dijke K, van Bruggen N, et al. Assessing tumor angiogenesis using macromolecular MR imaging contrast media. JMRI. 1997;7:68–74.

    Article  CAS  PubMed  Google Scholar 

  9. Barrett T, Kobayashi H, Brechbiel M, Choyke PL. Macromolecular MRI contrast agents for imaging tumor angiogenesis. Eur J Radiol. 2006;60:353–66.

    Article  PubMed  Google Scholar 

  10. Lu ZR, Wu X. Polydisulfide based biodegradable macromolecular magnetic resonance imaging contrast agents. Isr J Chem. 2010;50:220–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Wu X, Jeong EK, Emerson L, Hoffman J, Parker DL, Lu ZR. Noninvasive evaluation of antiangiogenic effect in a mouse tumor model by DCE-MRI with Gd-DTPA cystamine copolymers. Mol Pharm. 2010;7:41–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Wu X, Feng Y, Jeong EK, Emerson L, Lu ZR. Tumor characterization with dynamic contrast enhanced magnetic resonance imaging and biodegradable macromolecular contrast agents in mice. Pharm Res. 2009;26:2202–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Ye Z, Wu X, Tan M, Jesberger J, Grisworld M, Lu ZR. Synthesis and evaluation of a polydisulfide with Gd-DOTA monoamide side chains as a biodegradable macromolecular contrast agent for MR blood pool imaging. Contrast Media Mol Imaging. 2013;8:220–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Asbury MJ, Gatenby PB, O’Sullivan S, Bourke E. Bumetanide: potent new “loop” diuretic. Br Med J. 1972;1:211–3.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Haas M, Forbush 3rd B. The Na-K-Cl cotransporters. J Bioenerg Biomembr. 1998;30:161–72.

    Article  CAS  PubMed  Google Scholar 

  16. Haas BR, Sontheimer H. Inhibition of the sodium-potassium-chloride cotransporter isoform-1 reduces glioma invasion. Cancer Res. 2010;70:5597–606.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Algharabil J, Kintner DB, Wang Q, Begum G, Clark PA, Yang SS, et al. Inhibition of Na(+)-K(+)-2Cl(−) cotransporter isoform 1 accelerates temozolomide-mediated apoptosis in glioblastoma cancer cells. Cell Physiol Biochem. 2012;30:33–48.

    Article  CAS  PubMed  Google Scholar 

  18. Iwamoto LM, Fujiwara N, Nakamura KT, Wada RK. Na-K-2Cl cotransporter inhibition impairs human lung cellular proliferation. Am J Physiol Lung Cell Mol Physiol. 2004;287:L510–4.

    Article  CAS  PubMed  Google Scholar 

  19. Panet R, Atlan H. Stimulation of bumetanide-sensitive Na+/K+/Cl- cotransport by different mitogens in synchronized human skin fibroblasts is essential for cell proliferation. J Cell Biol. 1991;114:337–42.

    Article  CAS  PubMed  Google Scholar 

  20. St Lawrence KS, Lee TY. An adiabatic approximation to the tissue homogeneity model for water exchange in the brain: I. Theoretical derivation. J Cereb Blood Flow Metab. 1998;18:1365–77.

    Article  CAS  PubMed  Google Scholar 

  21. Ingrisch M, Sourbron S. Tracer-kinetic modeling of dynamic contrast-enhanced MRI and CT: a primer. J Pharmacokinet Pharmacodyn. 2013;40:281–300.

    Article  PubMed  Google Scholar 

  22. Kershaw LE, Cheng HL. Temporal resolution and SNR requirements for accurate DCE-MRI data analysis using the AATH model. Magn Reson Med. 2010;64:1772–80.

    Article  PubMed  Google Scholar 

  23. Cacheris WP, Quay SC, Rocklage SM. The relationship between thermodynamics and the toxicity of gadolinium complexes. Magn Reson Imaging. 1990;8:467–81.

    Article  CAS  PubMed  Google Scholar 

  24. Laurent S, Elst LV, Copoix F, Muller RN. Stability of MRI paramagnetic contrast media: a proton relaxometric protocol for transmetallation assessment. Investig Radiol. 2001;36:115–22.

    Article  CAS  Google Scholar 

  25. Mishra GP, Doddapaneni BS, Nguyen D, Alani AW. Antiangiogenic effect of docetaxel and everolimus as individual and dual-drug-loaded micellar nanocarriers. Pharm Res. 2014;31:660–9.

    Article  CAS  PubMed  Google Scholar 

  26. Harris AL. Hypoxia–a key regulatory factor in tumour growth. Nat Rev Cancer. 2002;2:38–47.

    Article  CAS  PubMed  Google Scholar 

  27. Powis G, Kirkpatrick L. Hypoxia inducible factor-1alpha as a cancer drug target. Mol Cancer Ther. 2004;3:647–54.

    CAS  PubMed  Google Scholar 

  28. Semenza GL. HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev. 2010;20:51–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Liao D, Johnson RS. Hypoxia: a key regulator of angiogenesis in cancer. Cancer Metastatis Rev. 2007;26:281–90.

    Article  CAS  Google Scholar 

  30. Fang JS, Gillies RD, Gatenby RA. Adaptation to hypoxia and acidosis in carcinogenesis and tumor progression. Semin Cancer Biol. 2008;18:330–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Paez-Ribes M, Allen E, Hudock J, Takeda T, Okuyama H, Vinals F, et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell. 2009;15:220–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Rapisarda A, Melillo G. Role of the hypoxic tumor microenvironment in the resistance to anti-angiogenic therapies. Drug Resist Updat. 2009;12:74–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Azam F, Mehta S, Harris AL. Mechanisms of resistance to antiangiogenesis therapy. Eur J Cancer. 2010;46:1323–32.

    Article  CAS  PubMed  Google Scholar 

  34. Gasparini G, Longo R, Fanelli M, Teicher BA. Combination of antiangiogenic therapy with other anticancer therapies: results, challenges, and open questions. J Clin Oncol. 2005;23:1295–311.

    Article  CAS  PubMed  Google Scholar 

  35. Jain RK. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med. 2001;7:987–9.

    Article  CAS  PubMed  Google Scholar 

  36. Hsu HW, Wall NR, Hsueh CT, Kim S, Ferris RL, Chen CS, et al. Combination antiangiogenic therapy and radiation in head and neck cancers. Oral Oncol. 2014;50:19–26.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This work was supported in part by the NIH grant R01 EB000489.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Rong Lu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 5111 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malamas, A.S., Jin, E., Zhang, Q. et al. Anti-angiogenic Effects of Bumetanide Revealed by DCE-MRI with a Biodegradable Macromolecular Contrast Agent in a Colon Cancer Model. Pharm Res 32, 3029–3043 (2015). https://doi.org/10.1007/s11095-015-1684-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-015-1684-4

KEY WORDS

Navigation