Skip to main content

Advertisement

Log in

Novel Self-assembled, Gel-core Hyaluosomes for Non-invasive Management of Osteoarthritis: In-vitro Optimization, Ex-vivo and In-vivo Permeation

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Hyaluronic acid (HA) is an imperative biomaterial with desirable rheological properties to alleviate symptoms of osteoarthritis. Nevertheless, scantly percutaeous permeation of this macromolecule handicaps its effective use for orthopedics and triggers intra-articular injection as the only surrogate. This study presents novel self-assembeld HA-based gel core elastic nanovesicles, (hyaluosomes; GC-HS), for non-invasive transdermal delivery of HA.

Methods

GC-HS were prepared with 1% HA using simple film hydration technique. Their size, zeta potential, percentage entrapment efficiency (% EE), elasticity, and ex-vivo transdermal permeation were evaluated compared to conventional liposomes CL. Structure elucidation of the formed novel system was performed using light, polarizing and transmission electron microscopy. In-vivo permeation of GC-HS through knee joints of female Sprague Dawley rats was compared to CL and HA alone.

Results

GC-HS showed nanosize (232.8 ± 7.2), high negative zeta potential (−45.1 ± 8.3) and higher elasticity (size alteration 5.43%) compared to CL. This novel system has self-penetration enhancing properties compared to CL and plain gel. GC-HS showed self-assembled properties and high physically stable for at least 6 months at 4°C. Ex-vivo permeation of HS was significantly higher than CL and plain HA gel alone. In-vivo study exhibited significant six folds increase in transdermal permeation of HA to knee joints from GC-HS compared to plain HA gel.

Conclusion

Novel GC-HS are promising nanogels for topical management of osteoarthritis surrogating the need for intra-articular injection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CL:

Conventional liposomes

CLG:

Conventional liposomal gel

GC-HS:

Gel core hyaluosomes

HA:

Hyaluronic acid

HS:

Hyaluosomes

SC:

Stratum corneum

References

  1. Rachakonda VK, Yerramsetty KM, Madihally SV, Robinson Jr RL, Gasem KA. Screening of chemical penetration enhancers for transdermal drug delivery using electrical resistance of skin. Pharm Res. 2008;25(11):2697–704.

    Article  CAS  PubMed  Google Scholar 

  2. Elnaggar YS, El-Massik MA, Abdallah OY. Fabrication, appraisal, and transdermal permeation of sildenafil citrate-loaded nanostructured lipid carriers versus solid lipid nanoparticles. Int J Nanomedicine. 2011;6:3195–205.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Elnaggar YS, El-Massik MA, Abdallah OY. Sildenafil citrate nanoemulsion vs. self-nanoemulsifying delivery systems: rational development and transdermal permeation. Int J Nanotechnol. 2011;8(8):749–63.

    Article  CAS  Google Scholar 

  4. Elnaggar YS, El-Refaie WM, El-Massik MA, Abdallah OY. Lecithin-based nanostructured gels for skin delivery: an update on state of art and recent applications. J Control Release. 2014;180:10–24.

    Article  CAS  PubMed  Google Scholar 

  5. Vyas LK, Tapar KK, Nema RK, Parashar AK. Development and characterization of topical liposomal gel formulation for anti-cellulite activity. Int J Pharm Pharm Sci. 2013;5(3):512–6.

    CAS  Google Scholar 

  6. Nikalje A, Tiwari S. Ethosomes: a novel tool for transdermal drug delivery. Indian J Pharm Sci. 2012;2(1):1–20.

    CAS  Google Scholar 

  7. Bragagni M, Mennini N, Maestrelli F, Cirri M, Mura P. Comparative study of liposomes, transfersomes and ethosomes as carriers for improving topical delivery of celecoxib. Drug Deliv. 2012;19(7):354–61.

    Article  CAS  PubMed  Google Scholar 

  8. Elsayed M, Abdallah OY, Naggar VF, Khalafallah NM. Deformable liposomes and ethosomes: mechanism of enhanced skin delivery. Int J Pharm. 2006;322(1):60–6.

    Article  CAS  PubMed  Google Scholar 

  9. Hiruta Y, Hattori Y, Kawano K, Obata Y, Maitani Y. Novel ultra-deformable vesicles entrapped with bleomycin and enhanced to penetrate rat skin. J Control Release. 2006;113(2):146–54.

    Article  CAS  PubMed  Google Scholar 

  10. Malakar J, Sen SO, Nayak AK, Sen KK. Formulation, optimization and evaluation of transferosomal gel for transdermal insulin delivery. Saudi Pharm J. 2012;20(4):355–63.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Gupta A, Aggarwal G, Singla S, Arora R. Transfersomes: a novel vesicular carrier for enhanced Transdermal delivery of sertraline: development, characterization, and performance evaluation. Sci Pharm. 2012;80(4):1061–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Touitou E, Godin B. Enhanced skin permeation using ethosomes. In: Smith EMH, editor. Percutaneous penetration enhancers. 2nd ed. New York: CRC Press; 2005.

    Google Scholar 

  13. Bahia APC, Azevedo EG, Ferreira LA, Frézard F. New insights into the mode of action of ultradeformable vesicles using calcein as hydrophilic fluorescent marker. Eur J Pharm Sci. 2010;39(1):90–6.

    Article  CAS  PubMed  Google Scholar 

  14. Helwa Y, Dave N, Liu J. Electrostatically directed liposome adsorption, internalization and fusion on hydrogel microparticles. Soft Matter. 2013;9:6151–8.

    Article  CAS  Google Scholar 

  15. An E, Jeong CB, Cha C, Kim DH, Lee H, Kong H, et al. Fabrication of microgel-in-liposome particles with improved water retention. Langmuir. 2012;28(9):4095–101.

    Article  CAS  PubMed  Google Scholar 

  16. Tiwari S, Goyal AK, Khatri K, Mishra N, Vyas SP. Gel core liposomes: an advanced carrier for improved vaccine delivery. J Microencapsul. 2009;26(1):75–82.

    Article  CAS  PubMed  Google Scholar 

  17. Tiwari S, Goyal AK, Mishra N, Khatri K, Vaidya B, Mehta A, et al. Development and characterization of novel carrier gel core liposomes based transmission blocking malaria vaccine. J Control Release. 2009;140(2):157–65.

    Article  CAS  PubMed  Google Scholar 

  18. Robert L, Robert A, Renard G. Biological effects of hyaluronan in connective tissues, eye, skin, venous wall. Role in aging. Pathol Biol. 2010;58(3):187–98.

    Article  CAS  PubMed  Google Scholar 

  19. Witteveen AG, Sierevelt IN, Blankevoort L, Kerkhoffs GM, van Dijk CN. Intra-articular sodium hyaluronate injections in the osteoarthritic ankle joint: effects, safety and dose dependency. Foot Ankle Surg. 2010;16(4):159–63.

    Article  PubMed  Google Scholar 

  20. Salk RS, Chang TJ, D’Costa WF, Soomekh DJ, Grogan KA. Sodium hyaluronate in the treatment of osteoarthritis of the ankle: a controlled, randomized, double-blind pilot study. J Bone Joint Surg. 2006;88(2):295–302.

    Article  PubMed  Google Scholar 

  21. Kong M, Chen XG, Kweon DK, Park HJ. Investigations on skin permeation of hyaluronic acid based nanoemulsion as transdermal carrier. Carbohydr Polym. 2011;86(2):837–43.

    Article  CAS  Google Scholar 

  22. Kong M, Park HJ. Stability investigation of hyaluronic acid based nanoemulsion and its potential as transdermal carrier. Carbohydr Polym. 2011;83(3):1303–10.

    Article  CAS  Google Scholar 

  23. Brown M, Jones SA. Hyaluronic acid: a unique topical vehicle for the localized delivery of drugs to the skin. J Eur Acad Dermatol Venereol. 2005;19(3):308–18.

    Article  CAS  PubMed  Google Scholar 

  24. Brown TJ, Alcorn D, Fraser JRE. Absorption of hyaluronan applied to the surface of intact skin. J Investig Dermatol. 1999;113(5):740–6.

    Article  CAS  PubMed  Google Scholar 

  25. Kage M, Tokudome Y, Hashimoto F. Permeation of hyaluronan tetrasaccharides through hairless mouse skin: an in vitro and in vivo study. Arch Dermatol Res. 2013;305(1):69–77.

    Article  CAS  PubMed  Google Scholar 

  26. Chen M, Gupta V, Anselmo AC, Muraski JA, Mitragotri S. Topical delivery of hyaluronic acid into skin using SPACE-peptide carriers. J Control Release. 2014;173:67–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Balazs EA, Denlinger JL. Viscosupplementation: a new concept in the treatment of osteoarthritis. J Rheumatol Suppl. 1993;39:3–9.

    CAS  PubMed  Google Scholar 

  28. Gaafar PM, Abdallah OY, Farid RM, Abdelkader H. Preparation, characterization and evaluation of novel elastic nano-sized niosomes (ethoniosomes) for ocular delivery of prednisolone. J Liposome Res. 2014;24:1–12.

    Article  Google Scholar 

  29. Freag MS, Elnaggar YS, Abdallah OY. Lyophilized phytosomal nanocarriers as platforms for enhanced diosmin delivery: optimization and ex vivo permeation. Int J Nanomedicine. 2013;8:2385–97.

    PubMed Central  PubMed  Google Scholar 

  30. Freag MS EY, Abdallah OY. Development of novel polymer-stabilized diosmin nanosuspensions: in vitro appraisal and ex vivo permeation. Int J Pharm. 2013;454:642–71.

    Article  Google Scholar 

  31. Barbosa I, Garcia S, Barbier-Chassefière V, Caruelle J-P, Martelly I, Papy-García D. Improved and simple micro assay for sulfated glycosaminoglycans quantification in biological extracts and its use in skin and muscle tissue studies. Glycobiology. 2003;13(9):647–53.

    Article  CAS  PubMed  Google Scholar 

  32. Fagnola M, Pagani MP, Maffioletti S, Tavazzi S, Papagni A. Hyaluronic acid in hydrophilic contact lenses: spectroscopic investigation of the content and release in solution. Cont Lens Anterior Eye. 2009;32(3):108–12.

    Article  PubMed  Google Scholar 

  33. Saranraj P, Sivakumar S, Sivasubramanian J, Geetha M. Production, optimization and spectroscopic studies of Hyaluronic acid extracted from Streptococcus pyogenes. Int J Pharm Biol Arch. 2011;2(3):954–9.

    Google Scholar 

  34. Kutsch H, Schleich C. Improved colorimetric determination of high-molecular weight hyaluronic acid from synovial fluids. Fresenius’ Z Anal Chem. 1989;333(8):810–7.

    Article  CAS  Google Scholar 

  35. Maghraby GME, Williams AC, Barry BW. Skin delivery of oestradiol from deformable and traditiona liposomes: mechanistic studies. J Pharm Pharmacol. 1999;51(10):1123–34.

    Article  PubMed  Google Scholar 

  36. El Maghraby GM, Williams AC, Barry BW. Oestradiol skin delivery from ultradeformable liposomes: refinement of surfactant concentration. Int J Pharm. 2000;196(1):63–74.

    Article  PubMed  Google Scholar 

  37. Cevc G, Blume G. Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force. Biochim Biophys Acta. 1992;1104(1):226–32.

    Article  CAS  PubMed  Google Scholar 

  38. Birkenfeld B, Parafiniuk M, Bielecka-Grzela S, Klimowicz A, Piwowarska-Bilska H, Mikołajczak R, et al. The penetration of topically applied ointment containing hyaluronic acid in rabbit tissues. Pol J Vet Sci. 2011;14(4):621–7.

    CAS  PubMed  Google Scholar 

  39. Kirby C, Gregoriadis G. Dehydration-rehydration vesicles: a simple method for high yield drug entrapment in liposomes. Nat Biotechnol. 1984;2(11):979–84.

    Article  CAS  Google Scholar 

  40. Duangjit S, Obata Y, Sano H, Onuki Y, Opanasopit P, Ngawhirunpat T, et al. Comparative study of novel ultradeformable liposomes: menthosomes, transfersomes and liposomes for enhancing skin permeation of meloxicam. Biol Pharm Bull. 2014;37(2):239–47.

    Article  CAS  PubMed  Google Scholar 

  41. Gupta PN, Mishra V, Rawat A, Dubey P, Mahor S, Jain S, et al. Non-invasive vaccine delivery in transfersomes, niosomes and liposomes: a comparative study. Int J Pharm. 2005;293(1):73–82.

    Article  CAS  PubMed  Google Scholar 

  42. Fang Y-P, Tsai Y-H, Wu P-C, Huang Y-B. Comparison of 5-aminolevulinic acid-encapsulated liposome versus ethosome for skin delivery for photodynamic therapy. Int J Pharm. 2008;356(1):144–52.

    Article  CAS  PubMed  Google Scholar 

  43. Lei W, Yu C, Lin H, Zhou X. Development of tacrolimus-loaded transfersomes for deeper skin penetration enhancement and therapeutic effect improvement in vivo. Asian J Pharm Sci. 2013;8(6):336–45.

    Article  Google Scholar 

  44. Müller-Goymann C. Physicochemical characterization of colloidal drug delivery systems such as reverse micelles, vesicles, liquid crystals and nanoparticles for topical administration. Eur J Pharm Biopharm. 2004;58(2):343–56.

    Article  PubMed  Google Scholar 

  45. Oka T, Miyahara R, Teshigawara T, Watanabe K. Development of novel cosmetic base using sterol surfactant. I. Preparation of novel emulsified particles with sterol surfactant+. J Oleo Sci. 2008;57(10):567–75.

    Article  CAS  PubMed  Google Scholar 

  46. Manosroi A, Wongtrakul P, Manosroi J, Sakai H, Sugawara F, Yuasa M, et al. Characterization of vesicles prepared with various non-ionic surfactants mixed with cholesterol. Coll Surf B Biointerf. 2003;30(1):129–38.

    Article  CAS  Google Scholar 

  47. Yang T, Cui FD, Choi MK, Cho JW, Chung SJ, Shim CK, et al. Enhanced solubility and stability of PEGylated liposomal paclitaxel: In vitro and in vivo evaluation. Int J Pharm. 2007;338(1):317–26.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors report no financial or personal conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yosra S. R. Elnaggar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Refaie, W.M., Elnaggar, Y.S.R., El-Massik, M.A. et al. Novel Self-assembled, Gel-core Hyaluosomes for Non-invasive Management of Osteoarthritis: In-vitro Optimization, Ex-vivo and In-vivo Permeation. Pharm Res 32, 2901–2911 (2015). https://doi.org/10.1007/s11095-015-1672-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-015-1672-8

KEY WORDS

Navigation