Skip to main content
Log in

A Flow-Cytometry-Based Approach to Facilitate Quantification, Size Estimation and Characterization of Sub-visible Particles in Protein Solutions

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Sub-visible particles were shown to facilitate unwanted immunogenicity of protein therapeutics. To understand the root cause of this phenomenon, a comprehensive analysis of these particles is required. We aimed at establishing a flow-cytometry-based technology to analyze the amount, size distribution and nature of sub-visible particles in protein solutions.

Methods

We adjusted the settings of a BD FACS Canto II by tuning the forward scatter and the side scatter detectors and by using size calibration beads to facilitate the analysis of particles with sizes below 1 μM. We applied a combination of Bis-ANS (4,4′-dianilino-1,1′-binaphthyl-5,5′-disulfonic acid dipotassium salt) and DCVJ (9-(2,2-dicyanovinyl)julolidine) to identify specific characteristics of sub-visible particles.

Results

The FACS technology allows the analysis of particles between 0.75 and 10 μm in size, requiring relatively small sample volumes. Protein containing particles can be distinguished from non-protein particles and cross-β-sheet structures contained in protein particles can be identified.

Conclusions

The FACS technology provides robust and reproducible results with respect to number, size distribution and specific characteristics of sub-visible particles between 0.75 and 10 μm in size. Our data for number and size distribution of particles is in good agreement with results obtained with the state-of-the-art technology micro-flow imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Aβ 1–40:

Amyloid beta 1–40 peptide

Bis-ANS:

4,4′-dianilino-1,1′-binaphthyl-5,5′-disulfonic acid dipotassium salt

DCVJ:

9-(2,2-dicyanovinyl)julolidine

DMSO:

Dimethyl sulfoxide

D-PBS:

Dulbecco’s Phosphate-Buffered Saline

preparation Non-Prot:

Non-protein particles

preparation Prot:

Protein particles without cross-ß-sheet structures

preparation Prot-Crossß:

Protein particles containing cross-ß-sheet structures

rFVIII:

Recombinant human factor VIII

TEM:

Transmission Electron Microscopy

ThT:

Thioflavin T

WFI:

Water For Injection

References

  1. Leader B, Baca QJ, Golan DE. Protein therapeutics: a summary and pharmacological classification. Nat Rev Drug Discov. 2008;7(1):21–39.

    Article  CAS  PubMed  Google Scholar 

  2. Büttel IC, Chamberlain P, Chowers Y, Ehmann F, Greinacher A, Jefferis R, et al. Taking immunogenicity assessment of therapeutic proteins to the next level. Biologicals. 2011;39(2):100–9.

    Article  PubMed  Google Scholar 

  3. Baker MP, Reynolds HM, Lumicisi B, Bryson CJ. Immunogenicity of protein therapeutics: the key causes, consequences and challenges. Self Nonself. 2010;1(4):314–22.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Schellekens H. The immunogenicity of therapeutic proteins. Discov Med. 2010;9:560–4.

    PubMed  Google Scholar 

  5. Casadevall N, Nataf J, Viron B. Pure red-cell aplasia and anti-erythropoietin antibodies in patients treated with recombinant erythropoietin. N Engl J Med. 2002;346:469–75.

    Article  CAS  PubMed  Google Scholar 

  6. Everds NE, Tarrant JM. Unexpected hematologic effects of biotherapeutics in nonclinical species and in humans. Toxicol Pathol. 2013;41:280–302.

    Article  PubMed  Google Scholar 

  7. Farrell RA, Marta M, Gaeguta AJ. Development of resistance to biologic therapies with reference to IFNb. Rheumatology. 2012;51:590–9.

    Article  CAS  PubMed  Google Scholar 

  8. Ratanji KD, Derrick JP, Dearman RJ, Kimber IJ. Immunogenicity of therapeutic proteins: influence of aggregation. J Immunotoxicol. 2014;11(2):99–109.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Rosenberg AS. Effects of protein aggregates: an immunologic perspective. AAPS J. 2006;8:501–7.

    Article  Google Scholar 

  10. Sauerborn M, Brinks V, Jiskoot W, Schellekens H. Immunological mechanism underlying the immune response to recombinant human protein therapeutics. Trends Pharmacol Sci. 2010;31:53–9.

    Article  CAS  PubMed  Google Scholar 

  11. Aguzzi A, O’Connor T. Protein aggregation diseases: pathogenicity and therapeutic perspectives. Nat Rev Drug Discov. 2010;9(3):237–48.

    Article  CAS  PubMed  Google Scholar 

  12. Sawaya MR, Sambashivan S, Nelson R, Ivanova MI, Sievers SA, Apostol MI, et al. Atomic structures of amyloid cross-beta spines reveal varied steric zippers. Nature. 2007;447(7143):453–7.

    Article  CAS  PubMed  Google Scholar 

  13. Maas C, Hermeling S, Bouma B, Jiskoot W, Gebbink MF. A role for protein misfolding in immunogenicity of biopharmaceuticals. J Biol Chem. 2007;282(4):2229–36.

    Article  CAS  PubMed  Google Scholar 

  14. Gustot A, Raussens V, Dehousse M, Dumoulin M, Bryant CE, Ruysschaert JM, et al. Activation of innate immunity by lysozyme fibrils is critically dependent on cross-β sheet structure. Cell Mol Life Sci. 2013;70(16):2999–3012.

    Article  CAS  PubMed  Google Scholar 

  15. Salminen A, Ojala J, Kauppinen A, Kaarniranta K, Suuronen T. Inflammation in Alzheimer’s disease: amyloid-beta oligomers trigger innate immunity defence via pattern recognition receptors. Prog Neurobiol. 2009;87(3):181–94.

    Article  CAS  PubMed  Google Scholar 

  16. Wang W, Singh SK, Li N, Toler MR, King KR, Nema S. Immunogenicity of protein aggregates–concerns and realities. Int J Pharm. 2012;431(1–2):1–11.

    CAS  PubMed  Google Scholar 

  17. Engelsman J, Garidel P, Smulders R, Koll H, Smith B, Bassarab S, et al. Strategies for the assessment of protein aggregates in pharmaceutical biotech product development. Pharm Res. 2011;28:920–33.

    Article  Google Scholar 

  18. Wiesbauer J, Prassl R, Nidetzky B. Renewal of the air-water interface as a critical system parameter of protein stability: aggregation of the human growth hormone and its prevention by surface-active compounds. Langmuir. 2013;29(49):15240–50.

    Article  CAS  PubMed  Google Scholar 

  19. Wang W. Lyophilization and development of solid protein pharmaceuticals. Int J Pharm. 2000;203(1–2):1–60.

    Article  CAS  PubMed  Google Scholar 

  20. Stathopulos PB, Scholz GA, Hwang YM, Rumfeldt JA, Lepock JR, Meiering EM. Sonication of proteins causes formation of aggregates that resemble amyloid. Protein Sci. 2004;13(11):3017–27.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Ruiz L, Reyes N, Aroche K, Tolosa V, Simanca V, Rogríguez T, et al. Influence of packaging material on the liquid stability of interferon-alpha2b. J Pharm Sci. 2005;8(2):207–16.

    CAS  Google Scholar 

  22. Gerhardt A, Mcgraw NR, Schwartz DK, Bee JS, Carpenter JF, Randolph TW. Protein aggregation and particle formation in prefilled glass syringes. J Pharm Sci. 2014;103(6):1601–12.

    Article  CAS  PubMed  Google Scholar 

  23. Chi EY, Weickmann J, Carpenter JF, Manning MC, Randolph TW. Heterogeneous nucleation-controlled particulate formation of recombinant human platelet-activating factor acetylhydrolase in pharmaceutical formulation. J Pharm Sci. 2005;94(2):256–74.

    Article  CAS  PubMed  Google Scholar 

  24. Akers MJ, Vasudevan V, Stickelmyer M. Formulation development of protein dosage forms. In: Nail SL, Akers MJ, editors. Development and manufacture of protein pharmaceuticals. New York: Kluwer Academic/Plenum Press; 2002. p. 47–127.

    Chapter  Google Scholar 

  25. Tyagli AK, Randolph TW, Dong A, Maloney KM, Hitscherich Jr C, Carpenter JF. IgG particle formation during filling pump operation: a case study of heterogeneous nucleation on stainless steel nanoparticles. J Pharm Sci. 2009;98:94–104.

    Article  Google Scholar 

  26. Kerwin BA, Akers MJ, Apostol I, Moore-Einsel C, Etter JE, Hess E, et al. Acute and long-term stability studies of deoxy hemoglobin and characterization of ascorbate-induced modifications. J Pharm Sci. 1999;88:79–88.

    Article  CAS  PubMed  Google Scholar 

  27. Hawe A, Friess W. Stabilization of a hydrophobic recombinant cytokine by human serum albumin. J Pharm Sci. 2007;96:2987–99.

    Article  CAS  PubMed  Google Scholar 

  28. Jones LS, Kaufmann A, Middaugh CR. Silicone oil induced aggregation of proteins. J Pharm Sci. 2005;94:918–27.

    Article  CAS  PubMed  Google Scholar 

  29. Thirumangalathu R, Krishnan S, Ricci MS, Brems DN, Randolph TW, Carpenter JF. Silicone oil- and agitation-induced aggregation of a monoclonal antibody in aqueous solution. J Pharm Sci. 2009;98:3167–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Carpenter JF, Randolph TW, Jiskoot W. Overlooking subvisible particles in therapeutic protein products: gaps that may compromise product quality. J Pharm Sci. 2009;98:1201–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Palutke M, KuKuruga D, Wolfe D, Roher A. Flow cytometric purification of Alzheimer’s disease amyloid plaque core protein using thioflavin T. Cytometry. 1987;8(5):494–9.

    Article  CAS  PubMed  Google Scholar 

  32. Mach H, Bhambhani A, Meyer BK, Burek S, Davis H, Blue JT, et al. The use of flow cytometry for the detection of subvisible particles in therapeutic protein formulations. J Pharm Sci. 2011;100(5):1671–8.

    Article  CAS  PubMed  Google Scholar 

  33. Ludwig DB, Trotter JT, Gabrielson JP, Carpenter JF, Randolph TW. Flow cytometry: a promising technique for the study of silicone oil-induced particulate formation in protein formulations. Anal Biochem. 2011;410(2):191–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Ostman J, Darinskas A, Zamotin V, Liutkevicius E, Lundgren E, Morozova-Roche LA. Does the cytotoxic effect of transient amyloid oligomers from common equine lysozyme in vitro imply innate amyloid toxicity? J Biol Chem. 2005;280(8):6269–75.

    Article  PubMed  Google Scholar 

  35. Lindgren M, Sörgjerd K, Hammarström P. Detection and characterization of aggregates, prefibrillar amyloidogenic oligomers, and protofibrils using fluorescence spectroscopy. Biophys J. 2005;88(6):4200–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Bertoncini CW, Celej MS. Small molecule fluorescent probes for the detection of amyloid self-assembly in vitro and in vivo. Curr Protein Pept Sci. 2011;12(3):205–20.

    Article  PubMed  Google Scholar 

  37. Paslawski W, Andreasen M, Nielsen SB, Lorenzen N, Thomsen K, Kaspersen JD, et al. High stability and cooperative unfolding of α-synuclein oligomers. Biochemistry. 2014;53(39):6252–63.

    Article  CAS  PubMed  Google Scholar 

  38. EMA, Committee for Medicinal Products for Human Use. EMEA/CHMP/EWP/192217/2009 Guideline on Bioanalytical Method Validation. February 2012.

  39. US Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER) and Center for Biologics Evaluation and Research (CBER). Draft guidance for industry: assay development for immunogenicity testing of therapeutic proteins. December 2009.

  40. Nolan JP, Stoner SA. A trigger channel threshold artifact in nanoparticle analysis. Cytometry A. 2013;83:301–5.

    Article  PubMed Central  PubMed  Google Scholar 

  41. van der Vlist EJ, Nolte-’t Hoen EN, Stoorvogel W, Arkesteijn GJ, Wauben MH. Fluorescent labeling of nano-sized vesicles released by cells and subsequent quantitative and qualitative analysis by high-resolution flow cytometry. Nat Protoc. 2012;7:1311–26.

    Article  PubMed  Google Scholar 

  42. Wen ZQ, Torraca G, Yee CY, Li G. Investigation of contaminants in protein pharmaceuticals in pre-filled syringes by multiple micro-spectroscopies. Am Pharm Rev. 2007;10:101–7.

    CAS  Google Scholar 

  43. Nishi H, Mathäs R, Fürst R, Winter G. Label-free flow cytometry analysis of subvisible aggregates in liquid IgG1 antibody formulations. J Pharm Sci. 2014;103(1):90–9.

    Article  CAS  PubMed  Google Scholar 

  44. van der Pol E, Coumans FA, Grootemaat AE, Gardiner C, Sargent IL, Harrison P, et al. Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. J Thromb Haemost. 2014;12(7):1182–92.

    Article  PubMed  Google Scholar 

  45. Shapiro HM. Practical flow cytometry, 4th edition. Vienna, Austria:Wiley-Liss; 2003.

  46. Jahn TR, Radford SE. The Yin and Yang of protein folding. FEBS J. 2005;272(23):5962–70.

    Article  CAS  PubMed  Google Scholar 

  47. Wuchner K, Büchler J, Spycher R, Dalmonte P, Volkin DB. Development of a microflow digital imaging assay to characterize protein particulates during storage of a high concentration IgG1 monoclonal antibody formulation. J Pharm Sci. 2010;99:3343–61.

    Article  CAS  PubMed  Google Scholar 

  48. Zölls S, Gregoritza M, Tantipophan R, Wiggenhom M, Winter G, Friess W, et al. How subvisible particles become invisible—relevance of the refractive index for protein particle analyses. J Pharm Sci. 2013;102:1434–46.

    Article  PubMed  Google Scholar 

  49. Fries A. Drug delivery of sensitive biopharmaceuticals with prefilled syringes. Drug Deliv Technol. 2009;9:22–7.

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The authors thank Elise Langdon-Neuner and Karima Benamara for editing the manuscript.

This work was supported by Baxter Innovation GmbH. C.L., M.M., T.P., T.W., P.M., P.L.T., F.S. and B.M.R. are employees of Baxter Innovation GmbH.

Authors Contribution

C. L. designed research, performed flow cytometric analysis, analyzed and interpreted data, and wrote the paper; M.M. designed research, analyzed and interpreted data, and wrote the paper; T.P. performed flow cytometric analysis, and analyzed and interpreted data, T.W. performed flow cytometric analysis of the method validation; P.M. performed, analyzed and interpreted micro flow imaging data; P.L.T. interpreted data; F.S. interpreted data; B.M.R. designed research, analyzed and interpreted data, and wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birgit M. Reipert.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 124 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lubich, C., Malisauskas, M., Prenninger, T. et al. A Flow-Cytometry-Based Approach to Facilitate Quantification, Size Estimation and Characterization of Sub-visible Particles in Protein Solutions. Pharm Res 32, 2863–2876 (2015). https://doi.org/10.1007/s11095-015-1669-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-015-1669-3

KEY WORDS

Navigation