Skip to main content

Advertisement

Log in

Nanoformulated Mutant SurR9-C84A: a Possible Key for Alzheimer’s and its Associated Inflammation

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Alzheimer’s disease (AD) is one of the untreatable neurodegenerative diseases characterised by the pathologic amyloid plaque deposition and inflammation. The aim of this study is to evaluate the neuroprotective effects of nanoformulated SurR9-C84A, a survivin mutant belonging to the inhibitors of the apoptosis (IAP) protein family. The effect of SurR9-C84A was studied against the β-amyloid toxicity and various inflammatory insults in the differentiated SK-N-SH neurons.

Method

SurR9-C84A loaded poly(lactic-co-glycolic acid) nanoparticles were prepared following the modified double emulsion technique. The neuroprotective effect of SurR9-C84A was evaluated against the amyloid-β (Aβ) peptide fragment, N-methyl-D-aspartate (NMDA) toxicity and the inflammatory assaults. To mimic the in vivo situation, a co-culture of neurons and microglia was also studied to validate these results.

Results

SurR9-C84A treatments showed improved neuronal health following Aβ, and NMDA toxicity in addition to inflammatory insults induced in mono and co-cultures. The neuroprotective effect was evident with the reduced neuronal death, accelerated expression of neuronal integrity markers (neurofilaments, beta-tubulin III etc.,) and the neuroprotective ERK/MAPK signalling.

Conclusion

The current results demonstrated that the SurR9-C84A nanoformulation was very effective in rescuing the neurons and holds a potential future application against AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

Aβ:

Amyloid β fragment

ICC:

Immunocytochemistry

IGF:

Insulin like growth factor-1

LDH:

Lactate dehydrogenase

MBP:

Myelin basic protein

NF:

Neurofilament

NGF:

Nerve growth factor

NSE:

Neuron specific enolase

PLGA:

Poly (D,L-lactide-co-glycolide)

PMA:

Phorbol-12-myristate-13-acetate

REFERENCES

  1. Sriramoju B, Kanwar RK, Kanwar JR. Nanoformulated cell-penetrating survivin mutant and its dual actions. Int J Nanomedicine. 2014;9:3279–98.

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Baratchi S, Kanwar RK, Cheung CH, Kanwar JR. Proliferative and protective effects of SurR9-C84A on differentiated neural cells. J Neuroimmunol. 2010;227:120–32.

    Article  CAS  PubMed  Google Scholar 

  3. Reers M, Smith TW, Chen LB. J-aggregate formation of a carbocyanine as a quantitative fluorescent indicator of membrane potential. Biochemistry. 1991;30:4480–6.

    Article  CAS  PubMed  Google Scholar 

  4. Gavenis K, Andereya S, Schmidt-Rohlfing B, Mueller-Rath R, Silny J, Schneider U. Millicurrent stimulation of human articular chondrocytes cultivated in a collagen type-I gel and of human osteochondral explants. BMC Complement Altern Med. 2010;10:43.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Fernandez-Botran R, Ahmed Z, Crespo FA, Gatenbee C, Gonzalez J, Dickson DW, et al. Cytokine expression and microglial activation in progressive supranuclear palsy. Parkinsonism Relat Disord. 2011;17:683–8.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Schimmelpfeng J, Weibezahn KF, Dertinger H. Quantification of NGF-dependent neuronal differentiation of PC-12 cells by means of neurofilament-L mRNA expression and neuronal outgrowth. J Neurosci Methods. 2004;139:299–306.

    Article  CAS  PubMed  Google Scholar 

  7. Qian Y, Zheng Y, Tiffany-Castiglioni E. Valproate reversibly reduces neurite outgrowth by human SY5Y neuroblastoma cells. Brain Res. 2009;1302:21–33.

    Article  CAS  PubMed  Google Scholar 

  8. Liu Z, Jiang H, Li H, Liu H, Xu X, Li Z. The effects of neuregulin-1beta on neuronal phenotypes of primary cultured dorsal root ganglion neurons by activation of PI3K/Akt. Neurosci Lett. 2012;511:52–7.

    Article  CAS  PubMed  Google Scholar 

  9. Vourc’h P, Romero-Ramos M, Chivatakarn O, Young HE, Lucas PA, El-Kalay M, et al. Isolation and characterization of cells with neurogenic potential from adult skeletal muscle. Biochem Biophys Res Commun. 2004;317:893–901.

    Article  PubMed  Google Scholar 

  10. Dong W, Vuletic S, Albers JJ. Differential effects of simvastatin and pravastatin on expression of Alzheimer’s disease-related genes in human astrocytes and neuronal cells. J Lipid Res. 2009;50:2095–102.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Combs CK, Johnson DE, Karlo JC, Cannady SB, Landreth GE. Inflammatory mechanisms in Alzheimer’s disease: inhibition of beta-amyloid-stimulated proinflammatory responses and neurotoxicity by PPARgamma agonists. J Neurosci. 2000;20:558–67.

    CAS  PubMed  Google Scholar 

  12. Selkoe DJ. Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev. 2001;81:741–66.

    CAS  PubMed  Google Scholar 

  13. Riccardi C, Nicoletti I. Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat Protoc. 2006;1:1458–61.

    Article  CAS  PubMed  Google Scholar 

  14. Chung IY, Benveniste EN. Tumor necrosis factor-alpha production by astrocytes. Induction by lipopolysaccharide, IFN-gamma, and IL-1 beta. J Immunol. 1990;144:2999–3007.

    CAS  PubMed  Google Scholar 

  15. Darlington CL. Astrocytes as targets for neuroprotective drugs. Curr Opin Investig Drugs. 2005;6:700–3.

    CAS  PubMed  Google Scholar 

  16. Johann S, Kampmann E, Denecke B, Arnold S, Kipp M, Mey J, et al. Expression of enzymes involved in the prostanoid metabolism by cortical astrocytes after LPS-induced inflammation. J Mol Neurosci. 2008;34:177–85.

    Article  CAS  PubMed  Google Scholar 

  17. Kim YS, Joh TH. Microglia, major player in the brain inflammation: their roles in the pathogenesis of Parkinson’s disease. Exp Mol Med. 2006;38:333–47.

    Article  CAS  PubMed  Google Scholar 

  18. Lee Mosley R, Benner EJ, Kadiu I, Thomas M, Boska MD, Hasan K, et al. Neuroinflammation, oxidative stress, and the pathogenesis of Parkinson’s disease. Clin Neurosci Res. 2006;6:261–81.

    Article  PubMed Central  PubMed  Google Scholar 

  19. McGeer PL, McGeer EG. Glial reactions in Parkinson’s disease. Mov Disord. 2008;23:474–83.

    Article  PubMed  Google Scholar 

  20. Williams A, Piaton G, Lubetzki C. Astrocytes–friends or foes in multiple sclerosis? Glia. 2007;55:1300–12.

    Article  PubMed  Google Scholar 

  21. Park MA, Zhang G, Mitchell C, Rahmani M, Hamed H, Hagan MP, et al. Mitogen-activated protein kinase kinase 1/2 inhibitors and 17-allylamino-17-demethoxygeldanamycin synergize to kill human gastrointestinal tumor cells in vitro via suppression of c-FLIP-s levels and activation of CD95. Mol Cancer Ther. 2008;7:2633–48.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Yoon CH, Kim MJ, Park MT, Byun JY, Choi YH, Yoo HS, et al. Activation of p38 mitogen-activated protein kinase is required for death receptor-independent caspase-8 activation and cell death in response to sphingosine. Mol Cancer Res. 2009;7:361–70.

    Article  CAS  PubMed  Google Scholar 

  23. Anderson CN, Tolkovsky AM. A role for MAPK/ERK in sympathetic neuron survival: protection against a p53-dependent, JNK-independent induction of apoptosis by cytosine arabinoside. J Neurosci. 1999;19:664–73.

    CAS  PubMed  Google Scholar 

  24. Marais R, Marshall CJ. Control of the ERK MAP kinase cascade by Ras and Raf. Cancer Surv. 1996;27:101–25.

    CAS  PubMed  Google Scholar 

  25. Han BH, Holtzman DM. BDNF protects the neonatal brain from hypoxic-ischemic injury in vivo via the ERK pathway. J Neurosci. 2000;20:5775–81.

    CAS  PubMed  Google Scholar 

  26. Karmarkar SW, Bottum KM, Krager SL, Tischkau SA. ERK/MAPK is essential for endogenous neuroprotection in SCN2.2 cells. PLoS One. 2011;6:e23493.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Kilic U, Kilic E, Jarve A, Guo Z, Spudich A, Bieber K, et al. Human vascular endothelial growth factor protects axotomized retinal ganglion cells in vivo by activating ERK-1/2 and Akt pathways. J Neurosci. 2006;26:12439–46.

    Article  CAS  PubMed  Google Scholar 

  28. Yang LC, Zhang QG, Zhou CF, Yang F, Zhang YD, Wang RM, et al. Extranuclear estrogen receptors mediate the neuroprotective effects of estrogen in the rat hippocampus. PLoS One. 2010;5:e9851.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Garcia I, Martinou I, Tsujimoto Y, Martinou JC. Prevention of programmed cell death of sympathetic neurons by the bcl-2 proto-oncogene. Science. 1992;258:302–4.

    Article  CAS  PubMed  Google Scholar 

  30. Wang S, Ren P, Li X, Guan Y, Zhang YA. 17beta-estradiol protects dopaminergic neurons in organotypic slice of mesencephalon by MAPK-mediated activation of anti-apoptosis gene BCL2. J Mol Neurosci. 2011;45:236–45.

    Article  CAS  PubMed  Google Scholar 

  31. Yin XM, Oltvai ZN, Korsmeyer SJ. BH1 and BH2 domains of Bcl-2 are required for inhibition of apoptosis and heterodimerization with Bax. Nature. 1994;369:321–3.

    Article  CAS  PubMed  Google Scholar 

  32. Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, et al. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science. 1997;275:1129–32.

    Article  CAS  PubMed  Google Scholar 

  33. Johnson EA, Svetlov SI, Pike BR, Tolentino PJ, Shaw G, Wang KK, et al. Cell-specific upregulation of survivin after experimental traumatic brain injury in rats. J Neurotrauma. 2004;21:1183–95.

    Article  PubMed  Google Scholar 

  34. Kirino T, Brightman MW, Oertel WH, Schmechel DE, Marangos PJ. Neuron-specific enolase as an index of neuronal regeneration and reinnervation. J Neurosci. 1983;3:915–23.

    CAS  PubMed  Google Scholar 

  35. Mink RB, Johnston JA. Changes in brain neurofilament and beta-tubulin proteins after cerebral hypoxia-ischemia in rabbits. Pathobiology. 2000;68:43–52.

    Article  CAS  PubMed  Google Scholar 

  36. Voigt A, Hartmann P, Zintl F. Differentiation, proliferation and adhesion of human neuroblastoma cells after treatment with retinoic acid. Cell Adhes Commun. 2000;7:423–40.

    Article  CAS  PubMed  Google Scholar 

  37. Lipton SA. Paradigm shift in NMDA receptor antagonist drug development: molecular mechanism of uncompetitive inhibition by memantine in the treatment of Alzheimer’s disease and other neurologic disorders. J Alzheimers Dis. 2004;6:S61–74.

    CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The authors would like to thank the Australia–India Strategic Research Fund (AISRF, BF030016/42) and National Health and Medical Research Council (NHMRC, APP1050286) for financial support. This manuscript has not been published and is not under consideration for publication elsewhere and we have no conflicts of interest to disclose. No writing assistance was utilized in the production of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagat R. Kanwar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 173 kb)

Fig. S1

(GIF 46 kb)

High resolution image (TIFF 367 kb)

Fig. S2

(GIF 51 kb)

High resolution image (TIFF 528 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sriramoju, B., Kanwar, R.K. & Kanwar, J.R. Nanoformulated Mutant SurR9-C84A: a Possible Key for Alzheimer’s and its Associated Inflammation. Pharm Res 32, 2787–2797 (2015). https://doi.org/10.1007/s11095-015-1664-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-015-1664-8

KEY WORDS

Navigation