Skip to main content
Log in

An Investigation of Nifedipine Miscibility in Solid Dispersions Using Raman Spectroscopy

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Raman spectroscopy is potentially an extremely useful tool for the understanding of drug-polymer interactions in solid dispersions. This is examined and demonstrated for the case of solid dispersions of nifedipine in a polymeric substrate.

Methods

Solid dispersions consisting of nifedipine and polyvinyl caprolactam - polyvinyl acetate - polyethylene glycol graft copolymer (Soluplus®) were prepared by freeze drying, melting and solvent evaporation at drug loadings of 10, 30, 50, 70 and 90% w/w. Drug-polymer interactions in the amorphous solid dispersion were estimated by Raman spectroscopy. The correlation between the solid state stability of the drug in a solid dispersion and the extent of drug-polymer interaction was monitored by X-ray diffractometry.

Results

The miscibility limit of nifedipine-Soluplus® was found to be 30% w/w drug loading for all preparation methods. The drug was found to interact with Soluplus®, through a hydrophilic interaction identified by infrared spectroscopy and a hydrophobic interaction which could be quantified by Raman spectroscopy. The average extent of the drug-polymer interaction in the studied amorphous samples at equivalent drug loading was similar, regardless of the preparation method. Inhomogeneities in samples prepared by melting contributed to a wider variation in drug-polymer interaction and poorer solid state stability, in terms of its crystallization tendency.

Conclusions

Raman spectroscopy was shown to be a useful technique in classifying miscibility levels based on the hydrophobic interaction between the drug and the polymer. Different drug loadings showed varying degrees of drug-polymer interaction, and hence variable solid state stability of the solid dispersion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

am-NIF:

Amorphous nifedipine

DSC:

Differential scanning calorimetry

FD:

Freeze drying

HPLC:

High performance liquid chromatography

IR:

Infrared spectroscopy

MAS:

Magic angle spinning

ME:

Melting

Min:

Minute

SE:

Solvent evaporation

ss-NMR:

Solid state-nuclear magnetic resonance

Tg :

Glass transition temperature

XPS:

X-ray photoelectron spectroscopy

XRD:

X-ray powder diffraction; X-ray powder diffractometry

α-NIF:

Nifedipine crystalline α-form

β-NIF:

Nifedipine crystalline β-form

References

  1. Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm. 2000;50(1):47–60.

    Article  CAS  PubMed  Google Scholar 

  2. Ivanisevic I. Physical stability studies of miscible amorphous solid dispersions. J Pharm Sci. 2010;99(9):4005–12.

    Article  CAS  PubMed  Google Scholar 

  3. Marsac PJ, Shamblin SL, Taylor LS. Theoretical and practical approaches for prediction of drug-polymer miscibility and solubility. Pharm Res. 2006;23(10):2417–26.

    Article  CAS  PubMed  Google Scholar 

  4. Qian F, Huang J, Hussain MA. Drug-polymer solubility and miscibility: stability consideration and practical challenges in amorphous solid dispersion development. J Pharm Sci. 2010;99(7):2941–7.

    Article  CAS  PubMed  Google Scholar 

  5. Rawlinson CF, Williams AC, Timmins P, Grimsey I. Polymer-mediated disruption of drug crystallinity. Int J Pharm. 2007;336(1):42–8.

    Article  CAS  PubMed  Google Scholar 

  6. Bhugra C, Pikal MJ. Role of thermodynamic, molecular, and kinetic factors in crystallization from the amorphous state. J Pharm Sci. 2008;97(4):1329–49.

    Article  CAS  PubMed  Google Scholar 

  7. Kestur US, Van Eerdenbrugh B, Taylor LS. Influence of polymer chemistry on crystal growth inhibition of two chemically diverse organic molecules. CrystEngComm. 2011;13(22):6712–8.

    Article  CAS  Google Scholar 

  8. Huang J, Li Y, Wigent RJ, Malick WA, Sandhu HK, Singhal D, et al. Interplay of formulation and process methodology on the extent of nifedipine molecular dispersion in polymers. Int J Pharm. 2011;420(1):59–67.

    Article  CAS  PubMed  Google Scholar 

  9. Djuris J, Nikolakakis I, Ibric S, Djuric Z, Kachrimanis K. Preparation of carbamazepine-Soluplus® solid dispersions by hot-melt extrusion, and prediction of drug-polymer miscibility by thermodynamic model fitting. Eur J Pharm Biopharm. 2013;84(1):228–37.

    Article  CAS  PubMed  Google Scholar 

  10. Rumondor ACF, Ivanisevic I, Bates S, Alonzo DE, Taylor LS. Evaluation of drug-polymer miscibility in amorphous solid dispersion systems. Pharm Res. 2009;26(11):2523–34.

    Article  CAS  PubMed  Google Scholar 

  11. Janssens S, De Zeure A, Paudel A, Van Humbeeck J, Rombaut P, Van den Mooter G. Influence of preparation methods on solid state supersaturation of amorphous solid dispersions: a case study with itraconazole and Eudragit E100. Pharm Res. 2010;27(5):775–85.

    Article  CAS  PubMed  Google Scholar 

  12. Konno H, Taylor LS. Influence of different polymers on the crystallization tendency of molecularly dispersed amorphous felodipine. J Pharm Sci. 2006;95(12):2692–705.

    Article  CAS  PubMed  Google Scholar 

  13. Marsac PJ, Konno H, Taylor LS. A comparison of the physical stability of amorphous felodipine and nifedipine systems. Pharm Res. 2006;23(10):2306–16.

    Article  CAS  PubMed  Google Scholar 

  14. Maniruzzaman M, Morgan DJ, Mendham AP, Pang J, Snowden MJ, Douroumis D. Drug-polymer intermolecular interactions in hot-melt extruded solid dispersions. Int J Pharm. 2013;443(1–2):199–208.

    Article  CAS  PubMed  Google Scholar 

  15. Taylor LS, Zografi G. Sugar–polymer hydrogen bond interactions in lyophilized amorphous mixtures. J Pharm Sci. 1998;87(12):1615–21.

    Article  CAS  PubMed  Google Scholar 

  16. Yuan X, Sperger D, Munson EJ. Investigating miscibility and molecular mobility of nifedipine-PVP amorphous solid dispersions using solid-state NMR spectroscopy. Mol Pharmaceutics. 2014;11(1):329–37.

  17. Yuasa H, Ozeki T, Takahashi H, Kanaya Y, Ueno M. Application of the solid dispersion method to the controlled release of medicine. VI. Release mechanism of a slightly water-soluble medicine and interaction between flurbiprofen and hydroxypropyl cellulose in solid dispersion. Chem Pharm Bull. 1994;42(2):354–8.

    Article  CAS  Google Scholar 

  18. Li X, Jiang C, Pan L, Zhang H, Hu L, Li T, et al. Effects of preparing techniques and aging on dissolution behavior of the solid dispersions of NF/Soluplus/Kollidon SR: identification and classification by a combined analysis by FT-IR spectroscopy and computational approaches. Drug Dev Ind Pharm. 2015;41(1):2–14.

    Article  CAS  PubMed  Google Scholar 

  19. Taylor LS, Zografi G. Spectroscopic characterization of interactions between PVP and indomethacin in amorphous molecular dispersions. Pharm Res. 1997;14(12):1691–8.

    Article  CAS  PubMed  Google Scholar 

  20. Breitenbach J, Schrof W, Neumann J. Confocal Raman-spectroscopy: analytical approach to solid dispersions and mapping of drugs. Pharm Res. 1999;16(7):1109–13.

    Article  CAS  PubMed  Google Scholar 

  21. Schmidt AG, Wartewig S, Picker KM. Polyethylene oxides: protection potential against polymorphic transitions of drugs? J Raman Spectrosc. 2004;35(5):360–7.

    Article  CAS  Google Scholar 

  22. Vajna B, Farkas I, Farkas A, Pataki H, Nagy Z, Madarász J, et al. Characterization of drug–cyclodextrin formulations using Raman mapping and multivariate curve resolution. J Pharm Biomed Anal. 2011;56(1):38–44.

    Article  CAS  PubMed  Google Scholar 

  23. Dürrigl M, Kwokal A, Hafner A, Klarić MŠ, Dumičić A, Cetina-Čižmek B, et al. Spray dried microparticles for controlled delivery of mupirocin calcium: process-tailored modulation of drug release. J Microencapsul. 2011;28(2):108–21.

    Article  PubMed  Google Scholar 

  24. Palermo RN, Anderson CA, Drennen Iii JK. Review: use of thermal, diffraction, and vibrational analytical methods to determine mechanisms of solid dispersion stability. J Pharm Innov. 2012;7(1):2–12.

    Article  Google Scholar 

  25. Grooff D, Liebenberg W, De Villiers MM. Preparation and transformation of true nifedipine polymorphs: investigated with differential scanning calorimetry and X-ray diffraction pattern fitting methods. J Pharm Sci. 2011;100(5):1944–57.

    Article  CAS  PubMed  Google Scholar 

  26. Küpper H, Spiller M, Küpper FC. Photometric method for the quantification of chlorophylls and their derivatives in complex mixtures: fitting with Gauss-peak spectra. Anal Biochem. 2000;286:247–56.

    Article  PubMed  Google Scholar 

  27. Dong J, Ozaki Y, Nakashima K. Infrared, Raman, and near-infrared spectroscopic evidence for the coexistence of various hydrogen-bond forms in poly(acrylic acid). Macromolecules. 1997;30(4):1111–7.

    Article  CAS  Google Scholar 

  28. Hu Y, Liu J, Li W. Resolution of overlapping spectra by curve-fitting. Anal Chim Acta. 2005;538:383–9.

    Article  CAS  Google Scholar 

  29. Forster A, Hempenstall J, Tucker I, Rades T. The potential of small-scale fusion experiments and the Gordon-Taylor equation to predict the suitability of drug/polymer blends for melt extrusion. Drug Dev Ind Pharm. 2001;27(6):549–60.

    Article  CAS  PubMed  Google Scholar 

  30. United States Pharmacopeial Convention. United States Pharmacopeia and National Formulary (USP 36-NF31). Rockville: United States Pharmacopeial Convention; 2012.

  31. Chan KLA, Fleming OS, Kazarian SG, Vassou D, Chryssikos GD, Gionis V. Polymorphism and devitrification of nifedipine under controlled humidity: a combined FT-Raman, IR and Raman microscopic investigation. J Raman Spectrosc. 2004;35(5):353–9.

    Article  CAS  Google Scholar 

  32. Grooff D, De Villiers MM, Liebenberg W. Thermal methods for evaluating polymorphic transitions in nifedipine. Thermochim Acta. 2007;454(1):33–42.

    Article  CAS  Google Scholar 

  33. Aso Y, Yoshioka S. Molecular mobility of nifedipine–PVP and phenobarbital–PVP solid dispersions as measured by 13C-NMR spin–lattice relaxation time. J Pharm Sci. 2006;95(2):318–25.

    Article  CAS  PubMed  Google Scholar 

  34. Apperley DC, Forster AH, Fournier R, Harris RK, Hodgkinson P, Lancaster RW, et al. Characterization of indomethacin and nifedipine using variable-temperature solid-state NMR. Magn Reson Chem. 2005;43:881–92.

    Article  CAS  PubMed  Google Scholar 

  35. Richardson MJ, Savill NG. Derivation of accurate glass transition temperatures by differential scanning calorimetry. Polymer. 1975;16(10):753–7.

    Article  CAS  Google Scholar 

  36. Hancock BC, Zografi G. The relationship between the glass transition temperature and the water content of amorphous pharmaceutical solids. Pharm Res. 1994;11(4):471–7.

    Article  CAS  PubMed  Google Scholar 

  37. Tang XLC, Pikal MJ, Taylor LS. A spectroscopic investigation of hydrogen bond patterns in crystalline and amorphous phases in dihydropyridine calcium channel blockers. Pharm Res. 2002;19(4):477–83.

    Article  CAS  PubMed  Google Scholar 

  38. Yoshie N, Azuma Y, Sakurai M, Inoue Y. Crystallization and compatibility of poly(vinyl alcohol)/poly(3-hydroxybutyrate) blends: Influence of blend composition and tacticity of poly(vinyl alcohol). J Appl Polym Sci. 1995;56(1):17–24.

    Article  CAS  Google Scholar 

  39. Qian F, Huang J, Zhu Q, Haddadin R, Gawel J, Garmise R, et al. Is a distinctive single T g a reliable indicator for the homogeneity of amorphous solid dispersion? Int J Pharm. 2010;395(1–2):232–5.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGEMENTS AND DISCLOSURES

This research has been supported by the Ratchadaphiseksomphot Endowment Fund 2013 of Chulalongkorn University (CU-56-649-HR). The authors also wish to thank Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Toho University and Chulalongkorn University Centenary Academic Development Project for providing research facilities. Thanks also to Dr John Kendrick for editing and comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jittima Chatchawalsaisin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keratichewanun, S., Yoshihashi, Y., Sutanthavibul, N. et al. An Investigation of Nifedipine Miscibility in Solid Dispersions Using Raman Spectroscopy. Pharm Res 32, 2458–2473 (2015). https://doi.org/10.1007/s11095-015-1638-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-015-1638-x

KEY WORDS

Navigation