Skip to main content
Log in

Physiology-Based IVIVE Predictions of Tramadol from in Vitro Metabolism Data

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To predict the tramadol in vivo pharmacokinetics in adults by using in vitro metabolism data and an in vitro-in vivo extrapolation (IVIVE)-linked physiologically-based pharmacokinetic (PBPK) modeling and simulation approach (Simcyp®).

Methods

Tramadol metabolism data was gathered using metabolite formation in human liver microsomes (HLM) and recombinant enzyme systems (rCYP). Hepatic intrinsic clearance (CLintH) was (i) estimated from HLM corrected for specific CYP450 contributions from a chemical inhibition assay (model 1); (ii) obtained in rCYP and corrected for specific CYP450 contributions by study-specific intersystem extrapolation factor (ISEF) values (model 2); and (iii) scaled back from in vivo observed clearance values (model 3). The model-predicted clearances of these three models were evaluated against observed clearance values in terms of relative difference of their geometric means, the fold difference of their coefficients of variation, and relative CYP2D6 contribution.

Results

Model 1 underpredicted, while model 2 overpredicted the total tramadol clearance by −27 and +22%, respectively. The CYP2D6 contribution was underestimated in both models 1 and 2. Also, the variability on the clearance of those models was slightly underpredicted. Additionally, blood-to-plasma ratio and hepatic uptake factor were identified as most influential factors in the prediction of the hepatic clearance using a sensitivity analysis.

Conclusion

IVIVE-PBPK proved to be a useful tool in combining tramadol’s low turnover in vitro metabolism data with system-specific physiological information to come up with reliable PK predictions in adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

PBPK:

Physiologically-based pharmacokinetics

IVIVE:

In vitro-in vivo extrapolation

CLint:

Intrinsic clearance

HLM:

Human liver microsomes

rCYP:

Recombinant CYP450 enzyme systems

ISEF:

Inter-system extrapolation factor

ODT:

O-desmethyltramadol

NDT:

N-desmethyltramadol

NODT:

N,O-didesmethyltramadol

REFERENCES

  1. Grond S. Clinical pharmacology of tramadol. Clin Pharmacokinet. 2004;43(13):879–923.

    Article  CAS  PubMed  Google Scholar 

  2. Subrahmanyam V, Renwick AB, Walters DG, Young PJ, Price RJ, Tonelli AP, et al. Identification of cytochrome P-450 isoforms responsible for cis-tramadol metabolism in human liver microsomes. Drug Metab Dispos. 2001;29(8):1146–55.

    CAS  PubMed  Google Scholar 

  3. Whirl-Carrillo M, McDonagh EM, Hebert JM, Gong L, Sangkuhl K, Thorn CF, et al. Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther. 2012;92(4):414–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Gonzalez F, Tukey R. Drug metabolism. In: Goodman L, Gilman A, Brunton L, Lazo J, Parker K, editors. Goodman and Gilman’s the pharmacological basis of therapeutics. New York: McGraw Hill; 2006. p. 71–91.

    Google Scholar 

  5. Zhou SF. Polymorphism of human cytochrome P450 2D6 and its clinical significance: part I. Clin Pharmacokinet. 2009;48(11):689–723.

    Article  CAS  PubMed  Google Scholar 

  6. Tzvetkov MV, Saadatmand AR, Lotsch J, Tegeder I, Stingl JC, Brockmoller J. Genetically polymorphic OCT1: another piece in the puzzle of the variable pharmacokinetics and pharmacodynamics of the opioidergic drug tramadol. Clin Pharmacol Ther. 2011;90(1):143–50.

    Article  CAS  PubMed  Google Scholar 

  7. Stamer UM, Musshoff F, Kobilay M, Madea B, Hoeft A, Stuber F. Concentrations of tramadol and O-desmethyltramadol enantiomers in different CYP2D6 genotypes. Clin Pharmacol Ther. 2007;82(1):41–7.

    Article  CAS  PubMed  Google Scholar 

  8. Rowland M, Peck C, Tucker G. Physiologically-based pharmacokinetics in drug development and regulatory science. Annu Rev Pharmacol Toxicol. 2011;51(1):45–73.

    Article  CAS  PubMed  Google Scholar 

  9. Edginton AN, Theil FP, Schmitt W, Willmann S. Whole body physiologically-based pharmacokinetic models: their use in clinical drug development. Expert Opin Drug Metab Toxicol. 2008;4(9):1143–52.

    Article  CAS  PubMed  Google Scholar 

  10. Jamei M, Marciniak S, Feng K, Barnett A, Tucker G, Rostami-Hodjegan A. The Simcyp population-based ADME simulator. Expert Opin Drug Metab Toxicol. 2009;5(2):211–23.

    Article  CAS  PubMed  Google Scholar 

  11. De Bock L, Colin P, Boussery K, Van Bocxlaer J. Development and validation of an enzyme-linked immunosorbent assay for the quantification of cytochrome 3A4 in human liver microsomes. Talanta. 2012;99:357–62.

    Article  PubMed  Google Scholar 

  12. Bouzom F, Walther B. Pharmacokinetic predictions in children by using the physiologically based pharmacokinetic modelling. Fundam Clin Pharmacol. 2008;22(6):579–87.

    Article  CAS  PubMed  Google Scholar 

  13. Rostami-Hodjegan A. Physiologically based pharmacokinetics joined with in vitro-in vivo extrapolation of ADME: a marriage under the arch of systems pharmacology. Clin Pharmacol Ther. 2012;92(1):50–61.

    Article  CAS  PubMed  Google Scholar 

  14. Obach RS, Reed-Hagen AE. Measurement of Michaelis constants for cytochrome P450-mediated biotransformation reactions using a substrate depletion approach. Drug Metab Dispos. 2002;30(7):831–7.

    Article  CAS  PubMed  Google Scholar 

  15. Di L, Atkinson K, Orozco CC, Funk C, Zhang H, McDonald TS, et al. In vitro-in vivo correlation for low-clearance compounds using hepatocyte relay method. Drug Metab Dispos. 2013;41(12):2018–23.

    Article  CAS  PubMed  Google Scholar 

  16. Fagerholm U. Prediction of human pharmacokinetics-evaluation of methods for prediction of hepatic metabolic clearance. J Pharm Pharmacol. 2007;59(6):803–28.

    Article  CAS  PubMed  Google Scholar 

  17. R Core Team. R. A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2013.

    Google Scholar 

  18. Turner D, Rostami-Hodjegan A, Tucker G, Yeo K. Prediction of nonspecific hepatic microsomal binding from readily available physicochemical properties. Drug Metab Rev. 2007;38(S1):162.

    Google Scholar 

  19. Crewe HK. Are there differences in the catalytic activity per unit enzyme of recombinantly expressed and human liver microsomal cytochrome P450 2C9? A systematic investigation into inter-system extrapolation factors. Biopharm Drug Dispos. 2011;32(6):303–18.

    Article  CAS  PubMed  Google Scholar 

  20. Rostami-Hodjegan A, Tucker GT. Simulation and prediction of in vivo drug metabolism in human populations from in vitro data. Nat Rev Drug Discov. 2007;6(2):140–8.

    Article  CAS  PubMed  Google Scholar 

  21. Lintz W, Barth H, Osterloh G, Schmidt-Bothelt E. Bioavailability of enteral formulations 1st communication: capsules. Arzneimittelforschung. 1986;36–2(8):1278–83.

    Google Scholar 

  22. Lintz W, Barth H, Becker R, Frankus E, Schmidt-Bothelt E. Pharmacokinetics of tramadol and bioavailability of enteral tramadol formulations—2nd communication: drops with ethanol. Arzneimittelforschung. 1998;48(5):436–45.

    CAS  PubMed  Google Scholar 

  23. Lintz W, Barth H, Osterloh G, Schmidt-Bothelt E. Pharmacokinetics of tramadol and bioavailability of enteral tramadol formulations—3rd communication: suppositories. Arzneimittelforschung. 1998;48(9):889–99.

    CAS  PubMed  Google Scholar 

  24. Quetglas EG, Azanza JR, Cardenas E, Sadaba B, Campanero MA. Stereoselective pharmacokinetic analysis of tramadol and its main phase I metabolites in healthy subjects after intravenous and oral administration of racemic tramadol. Biopharm Drug Dispos. 2007;28(1):19–33.

    Article  CAS  Google Scholar 

  25. Rodgers T, Leahy D, Rowland M. Physiologically based pharmacokinetic modeling 1: predicting the tissue distribution of moderate-to-strong bases. J Pharm Sci. 2005;94(6):1259–76.

    Article  CAS  PubMed  Google Scholar 

  26. Chen Y, Liu L, Nguyen K, Fretland AJ. Utility of intersystem extrapolation factors in early reaction phenotyping and the quantitative extrapolation of human liver microsomal intrinsic clearance using recombinant cytochromes P450. Drug Metab Dispos. 2011;39(3):373–82.

    Article  CAS  PubMed  Google Scholar 

  27. Yeo KR. Abundance of cytochromes P450 in human liver: a meta-analysis. Br J Clin Pharmacol. 2004;57(5):687–8.

    Google Scholar 

  28. Pedersen RS, Damkier P, Brosen K. Enantioselective pharmacokinetics of tramadol in CYP2D6 extensive and poor metabolizers. Eur J Clin Pharmacol. 2006;62(7):513–21.

    Article  CAS  PubMed  Google Scholar 

  29. Johnson TN, Rostami-Hodjegan A, Tucker GT. Prediction of the clearance of eleven drugs and associated variability in neonates, infants and children. Clin Pharmacokinet. 2006;45(9):931–56.

    Article  CAS  PubMed  Google Scholar 

  30. von Moltke LL, Greenblatt DJ, Duan SX, Daily JP, Harmatz JS, Shader RI. Inhibition of desipramine hydroxylation (cytochrome P450-2D6) in vitro by quinidine and by viral protease inhibitors: relation to drug interactions in vivo. J Pharm Sci. 1998;87(10):1184–9.

    Article  Google Scholar 

  31. Li X, Song X, Kamenecka TM, Cameron MD. Discovery of a highly selective CYP3A4 inhibitor suitable for reaction phenotyping studies and differentiation of CYP3A4 and CYP3A5. Drug Metab Dispos. 2012;40(9):1803–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Poulin P, Theil FP. Prediction of pharmacokinetics prior to in vivo studies. 1. Mechanism-based prediction of volume of distribution. J Pharm Sci. 2002;91(1):129–56.

    Article  CAS  PubMed  Google Scholar 

  33. De Buck SS, Mackie CE. Physiologically based approaches towards the prediction of pharmacokinetics: in vitro-in vivo extrapolation. Expert Opin Drug Metab Toxicol. 2007;3(6):865–78.

    Article  PubMed  Google Scholar 

  34. Foti RS, Fisher MB. Impact of incubation conditions on bufuralol human clearance predictions: enzyme liability and nonspecific binding. Drug Metab Dispos. 2004;32(3):295–304.

    Article  CAS  PubMed  Google Scholar 

  35. Sjogren E, Nyberg J, Magnusson MO, Lennernas H, Hooker A, Bredberg U. Optimal experimental design for assessment of enzyme kinetics in a drug discovery screening environment. Drug Metab Dispos. 2011;39(5):858–63.

    Article  PubMed  Google Scholar 

  36. Shao L, Hewitt M, Jerussi TP, Wu F, Malcolm S, Grover P, et al. In vitro and in vivo evaluation of O-alkyl derivatives of tramadol. Bioorg Med Chem Lett. 2008;18(5):1674–80.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang H, Sridar C, Kenaan C, Amunugama H, Ballou DP, Hollenberg PF. Polymorphic variants of cytochrome P450 2B6 (CYP2B6.4-CYP2B6.9) exhibit altered rates of metabolism for bupropion and efavirenz: a charge-reversal mutation in the K139E variant (CYP2B6.8) impairs formation of a functional cytochrome P450-reductase complex. J Pharmacol Exp Ther. 2011;338(3):803–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Zhao P, Zhang L, Grillo JA, Liu Q, Bullock JM, Moon YJ, et al. Applications of physiologically based pharmacokinetic (PBPK) modeling and simulation during regulatory review. Clin Pharmacol Ther. 2011;89(2):259–67.

    Article  CAS  PubMed  Google Scholar 

  39. Hallifax D, Houston JB. Saturable uptake of lipophilic amine drugs into isolated hepatocytes: mechanisms and consequences for quantitative clearance prediction. Drug Metab Dispos. 2007;35(8):1325–32.

    Article  CAS  PubMed  Google Scholar 

  40. Ito K, Houston JB. Comparison of the use of liver models for predicting drug clearance using in vitro kinetic data from hepatic microsomes and isolated hepatocytes. Pharm Res. 2004;21(5):785–92.

    Article  CAS  PubMed  Google Scholar 

  41. Foster JA, Houston JB, Hallifax D. Comparison of intrinsic clearances in human liver microsomes and suspended hepatocytes from the same donor livers: clearance-dependent relationship and implications for prediction of in vivo clearance. Xenobiotica. 2011;41(2):124–36.

    Article  CAS  PubMed  Google Scholar 

  42. Berezhkovskiy LM, Liu N, Halladay JS. Consistency of the novel equations for determination of hepatic clearance and drug time course in liver that account for the difference in drug ionization in extracellular and intracellular tissue water. J Pharm Sci. 2012;101(2):516–8.

    Article  CAS  PubMed  Google Scholar 

  43. Berezhkovskiy L, Wong S, Halladay J. On the maintenance of hepatocyte intracellular pH 7.0 in the in-vitro metabolic stability assay. J Pharmacokinet Pharmacodyn. 2013;40(6):683–9.

    Article  CAS  PubMed  Google Scholar 

  44. Poulin P, Hop CECA, Ho Q, Halladay JS, Haddad S, Kenny JR. Comparative assessment of in vitro-in vivo extrapolation methods used for predicting hepatic metabolic clearance of drugs. J Pharm Sci. 2012;101(11):4308–26.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

Karel Allegaert is supported by the Fund for Scientific Research, Flanders (Fundamental Clinical Investigatorship 1800214N).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koen Boussery.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

T’jollyn, H., Snoeys, J., Colin, P. et al. Physiology-Based IVIVE Predictions of Tramadol from in Vitro Metabolism Data. Pharm Res 32, 260–274 (2015). https://doi.org/10.1007/s11095-014-1460-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1460-x

KEY WORDS

Navigation