Skip to main content
Log in

siRNA-Mediated Knockdown of P450 Oxidoreductase in Rats: A Tool to Reduce Metabolism by CYPs and Increase Exposure of High Clearance Compounds

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To develop a tool based on siRNA-mediated knockdown of hepatic P450 oxidoreductase (POR) to decrease the CYP-mediated metabolism of small molecule drugs that suffer from rapid metabolism in vivo, with the aim of improving plasma exposure of these drugs.

Methods

siRNA against the POR gene was delivered using lipid nanoparticles (LNPs) into rats. The time course of POR mRNA knockdown, POR protein knockdown, and loss of POR enzyme activity was monitored. The rat livers were harvested to produce microsomes to determine the impact of POR knockdown on the metabolism of several probe substrates. Midazolam (a CYP3A substrate with high intrinsic clearance) was administered into LNP-treated rats to determine the impact of POR knockdown on midazolam pharmacokinetics.

Results

Hepatic POR mRNA and protein levels were significantly reduced by administering siRNA and the maximum POR enzyme activity reduction (~85%) occurred 2 weeks post-dose. In vitro analysis showed significant reductions in metabolism of probe substrates due to POR knockdown in liver, and in vivo POR knockdown resulted in greater than 10-fold increases in midazolam plasma concentrations following oral dosing.

Conclusions

Anti-POR siRNA can be used to significantly reduce hepatic metabolism by various CYPs as well as greatly increase the bioavailability of high clearance compounds following an oral dose, thus enabling it to be used as a tool to increase drug exposure in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. Strelevitz TJ, Foti RS, Fisher MB. In vivo use of the P450 inactivator 1-aminobenzotriazole in the rat: varied dosing route to elucidate gut and liver contributions to first-pass and systemic clearance. J Pharm Sci. 2006;95:1334–41.

    Article  CAS  PubMed  Google Scholar 

  2. Linder CD, Renaud NA, Hutzler JM. Is 1-aminobenzotriazole an appropriate in vitro tool as a nonspecific cytochrome P450 inactivator? Drug Metab Dispos. 2009;37:10–3.

    Article  CAS  PubMed  Google Scholar 

  3. Shen AL, O’Leary KA, Kasper CB. Association of multiple developmental defects and embryonic lethality with loss of microsomal NADPH-cytochrome P450 oxidoreductase. J of biol chem. 2002;277:6536–41.

    Article  CAS  Google Scholar 

  4. Gu J, Weng Y, Zhang QY, Cui H, Behr M, Wu L, et al. Liver-specific deletion of the NADPH-cytochrome P450 reductase gene: impact on plasma cholesterol homeostasis and the function and regulation of microsomal cytochrome P450 and heme oxygenase. J of biol chem. 2003;278:25895–901.

    Article  CAS  Google Scholar 

  5. Henderson CJ, Otto DME, Carrie D, Magnuson MA, McLaren AW, Rosewell I, et al. Inactivation of the hepatic cytochrome P450 system by conditional deletion of hepatic cytochrome P450 reductase. J Biol Chem. 2003;278:13480–6.

    Article  CAS  PubMed  Google Scholar 

  6. Riddick DS, Ding XX, Wolf CR, Porter TD, Pandey AV, Zhang QY, et al. NADPH-cytochrome P450 oxidoreductase: roles in physiology, pharmacology, and toxicology. Drug Metab Dispos. 2013;41:12–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Akinc A, Querbes W, De SM, Qin J, Frank-Kamenetsky M, Jayaprakash KN, et al. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol Ther. 2010;18:1357–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Semple SC, Akinc A, Chen JX, Sandhu AP, Mui BL, Cho CK, et al. Rational design of cationic lipids for siRNA delivery. Nat Biotechnol. 2010;28:172–U118.

    Article  CAS  PubMed  Google Scholar 

  9. Jayaraman M, Ansell SM, Mui BL, Tam YK, Chen JX, Du XY, et al. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing In vivo. Angew Chem Int Ed. 2012;51:8529–33.

    Article  CAS  Google Scholar 

  10. Maier MA, Jayaraman M, Matsuda S, Liu J, Barros S, Querbes W, et al. Biodegradable lipids enabling rapidly eliminated lipid nanoparticles for systemic delivery of RNAi therapeutics. Mol Ther. 2013;21:1570–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Coelho T, Adams D, Silva A, Lozeron P, Hawkins PN, Mant T, et al. Safety and efficacy of RNAi therapy for transthyretin amyloidosis. N Engl J Med. 2013;369:819–29.

    Article  CAS  PubMed  Google Scholar 

  12. Wincott F, Direnzo A, Shaffer C, Grimm S, Tracz D, Workman C, et al. Synthesis, deprotection. Anal Purif Rna Ribozymes Nucleic Acids Res. 1995;23:2677–84.

    Article  CAS  Google Scholar 

  13. M. Tadin-Strapps, L.B. Peterson, A.M. Cumiskey, R.L. Rosa, V.H. Mendoza, J. Castro-Perez, O. Puig, L.W. Zhang, W.R. Strapps, S. Yendluri, L. Andrews, V. Pickering, J. Rice, L. Luo, Z. Chen, S. Tep, B. Ason, E.P. Somers, A.B.. Sachs, S.R. Bartz, J. Tian, J. Chin, B.K. Hubbard, K.K. Wong, and L.J. Mitnaul. siRNA-induced liver ApoB knockdown lowers serum LDL-cholesterol in a mouse model with human-like serum lipids. Journal of Lipid Research. 52:1084-1097 (2011).

  14. Gindy ME, Leone AM, Cunningham JJ. Challenges in the pharmaceutical development of lipid-based short interfering ribonucleic acid therapeutics. Expert Opin on Drug Deliv. 2012;9:171–82.

    Article  CAS  Google Scholar 

  15. A. Walser, L.E. Benjamin, T. Flynn, C. Mason, R. Schwartz, and R.I. Fryer. Quinazolines and 1,4-Benzodiazepines .84. Synthesis and Reactions of Imidazo [1,5-a] [1,4] Benzodiazepines. Journal of Organic Chemistry. 43:936-944 (1978).

  16. A. Walser and R.I. Fryer. Quinazolines and 1,4-Benzodiazepines .93. Synthesis of Imidazo [1,5-a] [1,4] Benzodiazepines from Nitrooximes. Journal of Heterocyclic Chemistry. 20:551-558 (1983).

  17. Obach RS, Baxter JG, Liston TE, Silber BM, Jones BC, MacIntyre F, et al. The prediction of human pharmacokinetic parameters from preclinical and in vitro metabolism data. J Pharmacol Exp Ther. 1997;283:46–58.

    CAS  PubMed  Google Scholar 

  18. Obach RS. Prediction of human clearance of twenty-nine drugs from hepatic microsomal intrinsic clearance data: an examination of in vitro half-life approach and nonspecific binding to microsomes. Drug Metab Dispos. 1999;27:1350–9.

    CAS  PubMed  Google Scholar 

  19. Kumar S, Samuel K, Subramanian R, Braun MP, Stearns RA, Chiu SHL, et al. Extrapolation of diclofenac clearance from in vitro microsomal metabolism data: Role of acyl glucuronidation and sequential oxidative metabolism of the acyl glucuronide. J Pharmacol Exp Ther. 2002;303:969–78.

    Article  CAS  PubMed  Google Scholar 

  20. Kobayashi K, Urashima K, Shimada N, Chiba K. Substrate specificity for rat cytochrome P450 (CYP) isoforms: screening with cDNA-expressed systems of the rat. Biochem Pharmacol. 2002;63:889–96.

    Article  CAS  PubMed  Google Scholar 

  21. Choi JS, Burm JP. Effect of pioglitazone on the pharmacokinetics of verapamil and its major metabolite, norverapamil, in rats. Arch Pharm Res. 2008;31:1200–4.

    Article  CAS  PubMed  Google Scholar 

  22. Kotegawa T, Laurijssens BE, Von Moltke LL, Cotreau MM, Perloff MD, Venkatakrishnan K, et al. In vitro, pharmacokinetic, and pharmacodynamic interactions of ketoconazole and midazolam in the rat. J pharmacol exp ther. 2002;302:1228–37.

    Article  CAS  PubMed  Google Scholar 

  23. Denisov IG, Makris TM, Sligar SG, Schlichting I. Structure and chemistry of cytochrome P450. Chem Rev. 2005;105:2253–77.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang HM, Im SC, Waskell L. Cytochrome b (5) increases the rate of product formation by cytochrome p450 2B4 and competes with cytochrome p450 reductase for a binding site on cytochrome p450 2B4. J Biol Chem. 2007;282:29766–76.

    Article  CAS  PubMed  Google Scholar 

  25. Finn RD, McLaughlin LA, Ronseaux S, Rosewell I, Houston JB, Henderson CJ, et al. Defining the in vivo role for cytochrome b (5) in cytochrome P450 function through the conditional hepatic deletion of microsomal cytochrome b (5). J Biol Chem. 2008;283:31385–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. McLaughlin LA, Ronseaux S, Finn RD, Henderson CJ, Wolf CR. Deletion of microsomal cytochrome b (5) profoundly affects hepatic and extrahepatic drug metabolism. Mol Pharmacol. 2010;78:269–78.

    Article  CAS  PubMed  Google Scholar 

  27. Henderson CJ, McLaughlin LA, Wolf CR. Evidence that cytochrome b 5 and cytochrome b 5 reductase Can Act as sole electron donors to the hepatic cytochrome P450 system. Mol Pharmacol. 2013;83:1209–17.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCOLSURES

The authors would like to thank Matthew Shipton and Carolyn Six at BioreclamationIVT for their assistance with the production of custom liver and intestinal microsomes from the treated and control rats. All authors were employed by Merck & Co., Inc. at the time this research was performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rob S. Burke.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 65 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burke, R.S., Somasuntharam, I., Rearden, P. et al. siRNA-Mediated Knockdown of P450 Oxidoreductase in Rats: A Tool to Reduce Metabolism by CYPs and Increase Exposure of High Clearance Compounds. Pharm Res 31, 3445–3460 (2014). https://doi.org/10.1007/s11095-014-1433-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1433-0

KEY WORDS

Navigation