Skip to main content
Log in

Caloric Restriction-Mediated Induction of Lipid Metabolism Gene Expression in Liver is Enhanced by Keap1-Knockdown

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

CR increases fatty acid oxidation to decrease tissue lipid content. The Nuclear factor E2-related factor 2 (Nrf2)-Kelch like ECH associated Protein 1 (Keap1) pathway is an antioxidant gene regulatory pathway that has been previously investigated in weight gain. However, limited interaction of Nrf2/Keap1 and CR exists. The purpose of this study was to determine how Keap1 knockdown (Keap1-KD), which is known to increase Nrf2 activity, affects the CR response, such as weight loss, hepatic lipid decrease, and induction of fatty acid oxidation gene expression.

Methods

C57BL/6 and Keap1-KD mice were maintained on 40% CR or fed ad libitum for 6 weeks. Hepatic lipid content, lipid metabolic gene, and miRNA expression was quantified.

Results

CR lowered hepatic lipid content, and induced fatty acid oxidation gene expression to a greater degree in Keap1-KD compared to C57BL/6 mice. CR differentially altered miRNA 34a, 370, let-7b* in livers of Keap1-KD compared to C57BL/6 mice.

Conclusions

CR induced induction of fatty acid oxidation gene expression was augmented with Keap1 knockdown, which was associated with differential expression of several miRNAs implicated in fatty acid oxidation and lipid accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Acc1:

Acetyl-CoA carboxylase

Acot1:

Acyl-CoA thioesterase 1

AL:

Ad libitum

Cpt1a:

Carnitine palmitoyltransferase 1A

CR:

Caloric Restriction

Fabp4:

Fatty acid binding protein 4

Fas:

Fatty acid synthase

FXR:

Farnesoid X receptor

GCLC:

Glutamate cysteine ligase catalytic subunit, and

GST:

Glutathione S-Transferase

InsR:

insulin receptor

Keap1:

Kelch like ECH-associated Protein 1

Lxr:

Liver x receptor

NAFLD:

Non-alcoholic fatty liver disease

NQO1:

NAD(P) H:quinone oxidoreductase

Nrf2:

Nuclear factor E2-Related factor 2

Pgc-1α:

Peroxisome proliferator-activated receptor gamma coactivator 1-alpha

Pparα:

Peroxisome Proliferator activated receptor α

RISC:

RNA induced silencing complex

Scd1:

Stearoyl-CoA desaturase

Sirt1:

Sirtuin1

Srebp1c:

Sterol regulatory element binding protein 1c

REFERENCES

  1. Itoh K, Igarashi K, Hayashi N, Nishizawa M, Yamamoto M. Cloning and characterization of a novel erythroid cell-derived CNC family transcription factor heterodimerizing with the small Maf family proteins. Mol Cell Biol. 1995;15:4184–93.

    PubMed  CAS  Google Scholar 

  2. Moi P, Chan K, Asunis I, Cao A, Kan YW. Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region. Proc Natl Acad Sci U S A. 1994;91:9926–30.

    Article  PubMed  CAS  Google Scholar 

  3. Maher JM, Cheng X, Slitt AL, Dieter MZ, Klaassen CD. Induction of the multidrug resistance-associated protein family of transporters by chemical activators of receptor-mediated pathways in mouse liver. Drug Metab Dispos. 2005;33:956–62.

    Article  PubMed  CAS  Google Scholar 

  4. Maher JM, Dieter MZ, Aleksunes LM, Slitt AL, Guo G, Tanaka Y, et al. Oxidative and electrophilic stress induces multidrug resistance-associated protein transporters via the nuclear factor-E2-related factor-2 transcriptional pathway. Hepatology. 2007;46:1597–610.

    Article  PubMed  CAS  Google Scholar 

  5. McWalter GK, Higgins LG, McLellan LI, Henderson CJ, Song L, Thornalley PJ, et al. Transcription factor Nrf2 is essential for induction of NAD(P)H:quinone oxidoreductase 1, glutathione S-transferases, and glutamate cysteine ligase by broccoli seeds and isothiocyanates. J Nutr. 2004;134:3499S–506S.

    PubMed  CAS  Google Scholar 

  6. Kay HY, Kim WD, Hwang SJ, Choi HS, Gilroy RK, Wan YJ, et al. Nrf2 inhibits LXRalpha-dependent hepatic lipogenesis by competing with FXR for acetylase binding. Antioxid Redox Signal. 2011;15:2135–2146.

    Google Scholar 

  7. Shin S, Wakabayashi J, Yates MS, Wakabayashi N, Dolan PM, Aja S, et al. Role of Nrf2 in prevention of high-fat diet-induced obesity by synthetic triterpenoid CDDO-imidazolide. Eur J Pharmacol. 2009;620:138–44.

    Article  PubMed  CAS  Google Scholar 

  8. Tanaka Y, Aleksunes LM, Yeager RL, Gyamfi MA, Esterly N, Guo GL, et al. NF-E2-related factor 2 inhibits lipid accumulation and oxidative stress in mice fed a high-fat diet. J Pharmacol Exp Ther. 2008;325:655–64.

    Article  PubMed  CAS  Google Scholar 

  9. Pearson KJ, Lewis KN, Price NL, Chang JW, Perez E, Cascajo MV, et al. Nrf2 mediates cancer protection but not prolongevity induced by caloric restriction. Proc Natl Acad Sci U S A. 2008;105:2325–30.

    Article  PubMed  CAS  Google Scholar 

  10. Kawai Y, Garduno L, Theodore M, Yang J, Arinze IJ. Acetylation-deacetylation of the transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) regulates its transcriptional activity and nucleocytoplasmic localization. J Biol Chem. 2011;286:7629–40.

    Article  PubMed  CAS  Google Scholar 

  11. Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K, et al. The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American Gastroenterological Association, American Association for the Study of Liver Diseases, and American College of Gastroenterology. Gastroenterology. 2012;142:1592–609.

    Article  PubMed  Google Scholar 

  12. Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K, et al. The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology. 2012;55:2005–23.

    Article  PubMed  Google Scholar 

  13. Cantoand C, Auwerx J. PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr Opin Lipidol. 2009;20:98–105.

    Article  Google Scholar 

  14. Jeninga EH, Schoonjans K, Auwerx J. Reversible acetylation of PGC-1: connecting energy sensors and effectors to guarantee metabolic flexibility. Oncogene. 2010;29:4617–24.

    Article  PubMed  CAS  Google Scholar 

  15. Rodgersand JT, Puigserver P. Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1. Proc Natl Acad Sci U S A. 2007;104:12861–6.

    Article  Google Scholar 

  16. Nemoto S, Fergusson MM, Finkel T. SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1{alpha}. J Biol Chem. 2005;280:16456–60.

    Article  PubMed  CAS  Google Scholar 

  17. Ambros V. microRNAs: tiny regulators with great potential. Cell. 2001;107:823–6.

    Article  PubMed  CAS  Google Scholar 

  18. Pasquinelliand AE, Ruvkun G. Control of developmental timing by micrornas and their targets. Annu Rev Cell Dev Biol. 2002;18:495–513.

    Article  Google Scholar 

  19. Millarand AA, Waterhouse PM. Plant and animal microRNAs: similarities and differences. Funct Integr Genomics. 2005;5:129–35.

    Article  Google Scholar 

  20. Ebertand MS, Sharp PA. Roles for microRNAs in conferring robustness to biological processes. Cell. 2012;149:515–24.

    Article  Google Scholar 

  21. Ajit SK. Circulating microRNAs as biomarkers, therapeutic targets, and signaling molecules. Sensors (Basel). 2012;12:3359–69.

    Article  CAS  Google Scholar 

  22. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008;105:10513–8.

    Article  PubMed  CAS  Google Scholar 

  23. Rottiersand V, Naar AM. MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Biol. 2012;13:239–50.

    Article  Google Scholar 

  24. Wang XW, Heegaard NH, Orum H. MicroRNAs in liver disease. Gastroenterology. 2012;142:1431–43.

    Article  PubMed  CAS  Google Scholar 

  25. Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M, et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 2006;3:87–98.

    Article  PubMed  CAS  Google Scholar 

  26. Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature. 2005;438:685–9.

    Article  PubMed  Google Scholar 

  27. Cermelli S, Ruggieri A, Marrero JA, Ioannou GN, Beretta L. Circulating microRNAs in patients with chronic hepatitis C and non-alcoholic fatty liver disease. PLoS One. 2011;6:e23937.

    Article  PubMed  CAS  Google Scholar 

  28. Yamakuchi M, Ferlito M, Lowenstein CJ. miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci U S A. 2008;105:13421–6.

    Article  PubMed  CAS  Google Scholar 

  29. Leeand J, Kemper JK. Controlling SIRT1 expression by microRNAs in health and metabolic disease. Aging (Albany NY). 2010;2:527–34.

    Google Scholar 

  30. Davalos A, Goedeke L, Smibert P, Ramirez CM, Warrier NP, Andreo U, et al. miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc Natl Acad Sci U S A. 2011;108:9232–7.

    Article  PubMed  CAS  Google Scholar 

  31. Rayner KJ, Suarez Y, Davalos A, Parathath S, Fitzgerald ML, Tamehiro N, et al. MiR-33 contributes to the regulation of cholesterol homeostasis. Science. 2010;328:1570–3.

    Article  PubMed  CAS  Google Scholar 

  32. Ogawa T, Enomoto M, Fujii H, Sekiya Y, Yoshizato K, Ikeda K, et al. MicroRNA-221/222 upregulation indicates the activation of stellate cells and the progression of liver fibrosis. Gut. 2012;61:1600–9.

    Article  PubMed  CAS  Google Scholar 

  33. Sun T, Fu M, Bookout AL, Kliewer SA, Mangelsdorf DJ. MicroRNA let-7 regulates 3T3-L1 adipogenesis. Mol Endocrinol. 2009;23:925–31.

    Article  PubMed  CAS  Google Scholar 

  34. Zhu H, Shyh-Chang N, Segre AV, Shinoda G, Shah SP, Einhorn WS, et al. The Lin28/let-7 axis regulates glucose metabolism. Cell. 2011;147:81–94.

    Article  PubMed  CAS  Google Scholar 

  35. Wu KC, Cui JY, Klaassen CD. Beneficial role of Nrf2 in regulating NADPH generation and consumption. Toxicol Sci. 2011;123:590–600.

    Article  PubMed  CAS  Google Scholar 

  36. Reisman SA, Yeager RL, Yamamoto M, Klaassen CD. Increased Nrf2 activation in livers from Keap1-knockdown mice increases expression of cytoprotective genes that detoxify electrophiles more than those that detoxify reactive oxygen species. Toxicol Sci. 2009;108:35–47.

    Article  PubMed  CAS  Google Scholar 

  37. Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, et al. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun. 1997;236:313–22.

    Article  PubMed  CAS  Google Scholar 

  38. Xu J, Kulkarni SR, Donepudi AC, More VR, Slitt AL. Enhanced Nrf2 activity worsens insulin resistance, impairs lipid accumulation in adipose tissue, and increases hepatic steatosis in leptin-deficient mice. Diabetes. 2012;61:3208–18.

    Article  PubMed  CAS  Google Scholar 

  39. Chen D, Bruno J, Easlon E, Lin SJ, Cheng HL, Alt FW, et al. Tissue-specific regulation of SIRT1 by calorie restriction. Genes Dev. 2008;22:1753–7.

    Article  PubMed  CAS  Google Scholar 

  40. Dongol B, Shah Y, Kim I, Gonzalez FJ, Hunt MC. The acyl-CoA thioesterase I is regulated by PPARalpha and HNF4alpha via a distal response element in the promoter. J Lipid Res. 2007;48:1781–91.

    Article  PubMed  CAS  Google Scholar 

  41. Stulnig TM, Steffensen KR, Gao H, Reimers M, Dahlman-Wright K, Schuster GU, et al. Novel roles of liver X receptors exposed by gene expression profiling in liver and adipose tissue. Mol Pharmacol. 2002;62:1299–305.

    Article  PubMed  CAS  Google Scholar 

  42. Zhang YK, Saupe KW, Klaassen CD. Energy restriction does not compensate for the reduced expression of hepatic drug-processing genes in mice with aging. Drug Metab Dispos. 2010;38:1122–31.

    Article  PubMed  CAS  Google Scholar 

  43. Reisman SA, Csanaky IL, Aleksunes LM, Klaassen CD. Altered disposition of acetaminophen in Nrf2-null and Keap1-knockdown mice. Toxicol Sci. 2009;109:31–40.

    Article  PubMed  CAS  Google Scholar 

  44. Lee, AP, Sharma A, Song G, Miao J, Mo YY, Wang L, et al. A pathway involving farnesoid X receptor and small heterodimer partner positively regulates hepatic sirtuin 1 levels via microRNA-34a inhibition. The J Biol Chem. 2010;285:12604–12611

    Google Scholar 

  45. Castro RE, Ferreira DM, Afonso MB, Borralho PM, Machado MV, Cortez-Pinto H, et al. miR-34a/SIRT1/p53 is suppressed by ursodeoxycholic acid in the rat liver and activated by disease severity in human non-alcoholic fatty liver disease. J Hepatol. 2013;58(1):119–25

    Google Scholar 

  46. More VR, Xu J, Shimpi PC, Belgrave C, Luyendyk JP, Yamamoto M, et al. Keap1 knockdown increases markers of metabolic syndrome after long-term fat diet feeding. Free Radic Biol Med. 2013.

  47. Zhang YK, Yeager RL, Tanaka Y, Klaassen CD. Enhanced expression of Nrf2 in mice attenuates the fatty liver produced by a methionine- and choline-deficient diet. Toxicol Appl Pharmacol. 2010;245:326–34.

    Article  PubMed  CAS  Google Scholar 

  48. Bouchard L, Rabasa-Lhoret R, Faraj M, Lavoie ME, Mill J, Perusse L, et al. Differential epigenomic and transcriptomic responses in subcutaneous adipose tissue between low and high responders to caloric restriction. Am J Clin Nutr. 2010;91:309–20.

    Article  PubMed  CAS  Google Scholar 

  49. Milagro FI, Campion J, Cordero P, Goyenechea E, Gomez-Uriz AM, Abete I, et al. A dual epigenomic approach for the search of obesity biomarkers: DNA methylation in relation to diet-induced weight loss. FASEB J. 2011;25:1378–89.

    Article  PubMed  CAS  Google Scholar 

  50. Chaudharyand N, Pfluger PT. Metabolic benefits from Sirt1 and Sirt1 activators. Curr Opin Clin Nutr Metab Care. 2009;12:431–7.

    Article  Google Scholar 

  51. Yamakuchi M, Lowenstein CJ. MiR-34, SIRT1 and p53: the feedback loop. Cell Cycle Georgetown, Tex. 2009;8:712–5.

    Article  PubMed  CAS  Google Scholar 

  52. Iliopoulos D, Drosatos K, Hiyama Y, Goldberg IJ, Zannis VI. MicroRNA-370 controls the expression of microRNA-122 and Cpt1alpha and affects lipid metabolism. J Lipid Res. 2010;51:1513–23.

    Article  PubMed  CAS  Google Scholar 

  53. Jaiswal AK. Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Radic Biol Med. 2004;36:1199–207.

    Article  PubMed  CAS  Google Scholar 

  54. Frostand RJ, Olson EN. Control of glucose homeostasis and insulin sensitivity by the Let-7 family of microRNAs. Proc Natl Acad Sci USA. 2011;108:21075–21080

    Google Scholar 

  55. Hou W, Tian Q, Steuerwald NM, Schrum LW, Bonkovsky HL. The let-7 microRNA enhances heme oxygenase-1 by suppressing Bach1 and attenuates oxidant injury in human hepatocytes. Biochim Biophys Acta. 2012;1819:1113–22.

    Article  PubMed  CAS  Google Scholar 

  56. Sangokoya C, Telen MJ, Chi JT. microRNA miR-144 modulates oxidative stress tolerance and associates with anemia severity in sickle cell disease. Blood. 2010;116:4338–48.

    Article  PubMed  CAS  Google Scholar 

  57. Wu KC, Liu J, Klaassen CD. Role of Nrf2 in preventing ethanol-induced oxidative stress and lipid accumulation. Toxicol Appl Pharmacol. 2012;262:321–329.

    Google Scholar 

  58. Mori MA, Raghavan P, Thomou T, Boucher J, Robida-Stubbs S, Macotela Y, et al. Role of microRNA processing in adipose tissue in stress defense and longevity. Cell Metab. 2012;16:336–47.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela L. Slitt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 153 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulkarni, S.R., Armstrong, L.E. & Slitt, A.L. Caloric Restriction-Mediated Induction of Lipid Metabolism Gene Expression in Liver is Enhanced by Keap1-Knockdown. Pharm Res 30, 2221–2231 (2013). https://doi.org/10.1007/s11095-013-1138-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1138-9

KEY WORDS

Navigation