Skip to main content
Log in

A New Approach to Dissolution Testing by UV Imaging and Finite Element Simulations

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Most dissolution testing systems rely on analyzing samples taken remotely from the dissolving sample surface at different time points with poor time resolution and therefore provide relatively unresolved temporally and spatially information on the dissolution process. In this study, a flexible numerical model was combined with a novel UV imaging system, allowing monitoring of the dissolution process with sub second time resolution.

Methods

The dissolution process was monitored by both effluent collection and UV imaging of compacts of paracetamol. A finite element model (FEM) was used to characterize the UV imaging system.

Results

A finite element model of the UV imaging system was successfully built. The dissolution of paracetamol was studied by UV imaging and by analysis of the effluent. The dissolution rates obtained from the collected effluent were in good agreement with the numerical model. The numerical model allowed an assessment of the ability of the UV imager to measure dissolution—time profiles. The simulation was able to extend the experimental results to conditions not easily obtained experimentally.

Conclusions

Combining FEM,experimental dissolution data and UV imaging provided experimental validation of the FEM model as well as a detailed description of the dissolution process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

A:

radius of circular compact

C:

concentration

Csat :

saturation concentration

d:

flow channel width

D:

diffusion coefficient

DH :

hydraulic diameter

F:

mass flux of dissolving compound

FEM:

finite element method

H:

characteristic length defined as the height of the flow cell over the compact

J:

dissolution rate

Pe:

Peclet number

Ps :

shear Peclet number

Q:

volumetric flow rate

Re:

Reynolds number

u:

velocity

U:

average linear flow rate

USP:

United States pharmacopeia

UV:

ultraviolet

Vf :

volumetric flow rate

ν:

kinematic viscosity

ρ:

density

REFERENCES

  1. Siewert M, Dressman J, Brown CK, Shah VP. FIP/AAPS guidelines to dissolution/in vitro release testing of novel/special dosage forms. AAPS PharmSciTech. 2003;4:E7.

    Article  PubMed  Google Scholar 

  2. Gray V, Kelly G, Xia M, Butler C, Thomas S, Mayock S. The science of USP 1 and 2 dissolution: present challenges and future relevance. Pharm Res. 2009;26:1289–302.

    Article  PubMed  CAS  Google Scholar 

  3. Dressman JB, Amidon GL, Reppas C, Shah VP. Dissolution testing as a prognostic tool for oral drug absorption: immediate release dosage forms. Pharm Res. 1998;15:11–22.

    Article  PubMed  CAS  Google Scholar 

  4. Tong C, Lozano R, Mao Y, Mirza T, Löbenberg R, Nickerson B, et al. The value of in vitro dissolution in drug development. Pharm Technol. 2009;33:52–64.

    CAS  Google Scholar 

  5. Amidon GL, Lennernas H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12:413–20.

    Article  PubMed  CAS  Google Scholar 

  6. Mudie DM, Amidon GL, Amidon GE. Physiological parameters for oral delivery and in vitro testing. Mol Pharm. 2010;7:1388–405.

    Article  PubMed  CAS  Google Scholar 

  7. Lehto P, Aaltonen J, Tenho M, Rantanen J, Hirvonen J, Tanninen VP, et al. Solvent-mediated solid phase transformations of carbamazepine: effects of simulated intestinal fluid and fasted state simulated intestinal fluid. J Pharm Sci. 2009;98:985–96.

    Article  PubMed  CAS  Google Scholar 

  8. Wilson D, Wren S, Reynolds G. Linking dissolution to disintegration in immediate release tablets using image analysis and a population balance modelling approach. Pharm Res. 2012;29:198–208.

    Article  PubMed  CAS  Google Scholar 

  9. Soto E, Haertter S, Koenen-Bergmann M, Staab A, Troconiz IF. Population in vitro-in vivo correlation model for pramipexole slow-release oral formulations. Pharm Res. 2010;27:340–9.

    Article  PubMed  CAS  Google Scholar 

  10. D’Arcy DM, Corrigan OI, Healy AM. Evaluation of hydrodynamics in the basket dissolution apparatus using computational fluid dynamics—dissolution rate implications. Eur J Pharm Sci. 2006;27:259–67.

    Article  PubMed  Google Scholar 

  11. Kukura J, Baxter JL, Muzzio FJ. Shear distribution and variability in the USP Apparatus 2 under turbulent conditions. Int J Pharm. 2004;279:9–17.

    Article  PubMed  CAS  Google Scholar 

  12. D’Arcy DM, Corrigan OI, Healy AM. Hydrodynamic simulation (computational fluid dynamics) of asymmetrically positioned tablets in the paddle dissolution apparatus: impact on dissolution rate and variability. J Pharm Pharmacol. 2005;57:1243–50.

    Article  PubMed  Google Scholar 

  13. Nelson KG, Shah AC. Convective diffusion-model for a transport-controlled dissolution rate process. J Pharm Sci. 1975;64:610–4.

    Article  PubMed  CAS  Google Scholar 

  14. Shah AC, Nelson KG. Evaluation of a convective diffusion drug dissolution rate model. J Pharm Sci. 1975;64:1518–20.

    Article  PubMed  CAS  Google Scholar 

  15. Missel PJ, Stevens LE, Mauger JW. Reexamination of convective diffusion/drug dissolution in a laminar flow channel: accurate prediction of dissolution rate. Pharm Res. 2004;21:2300–6.

    Article  PubMed  CAS  Google Scholar 

  16. Neervannan S, Reinert JD, Stella VJ, Southard MZ. A numerical convective-diffusion model for dissolution of neutral compounds under laminar-flow conditions. Int J Pharm. 1993;96:167–74.

    Article  CAS  Google Scholar 

  17. Neervannan S, Dias LS, Southard MZ, Stella VJ. A convective-diffusion model for dissolution of 2 noninteracting drug mixtures from co-compressed slabs under laminar hydrodynamic conditions. Pharm Res. 1994;11:1288–95.

    Article  PubMed  CAS  Google Scholar 

  18. Greco K, Bergman TL, Bogner R. Design and characterization of a laminar flow-through dissolution apparatus: comparison of hydrodynamic conditions to those of common dissolution techniques. Pharm Dev Technol. 2011;16:75–87.

    Article  PubMed  CAS  Google Scholar 

  19. D’Arcy DM, Persoons T. Mechanistic modelling and mechanistic monitoring: simulation and shadowgraph imaging of particulate dissolution in the flow-through apparatus. J Pharm Sci. 2011;100:1102–15.

    Article  PubMed  Google Scholar 

  20. D’Arcy DM, Liu B, Persoons T, Corrigan OI. Hydrodynamic complexity induced by the pulsing flow field in USP dissolution apparatus 4. Dissolut Technol. 2011;18:6–13.

    Google Scholar 

  21. Østergaard J, Meng-Lund E, Larsen SW, Larsen C, Petersson K, Lenke J, et al. Real-time UV imaging of nicotine release from transdermal patch. Pharm Res. 2010;27:2614–23.

    Article  PubMed  Google Scholar 

  22. Østergaard J, Ye F, Rantanen J, Yaghmur A, Larsen SW, Larsen C, et al. Monitoring lidocaine single-crystal dissolution by ultraviolet imaging. J Pharm Sci. 2011;100:3405–10.

    Article  PubMed  Google Scholar 

  23. Boetker JP, Savolainen M, Koradia V, Tian F, Rades T, Müllertz A, et al. Insights into the early dissolution events of amlodipine using UV imaging and raman spectroscopy. Mol Pharm. 2011;8:1372–80.

    Article  PubMed  CAS  Google Scholar 

  24. Ye FB, Yaghmur A, Jensen H, Larsen SW, Larsen C, Ostergaard J. Real-time UV imaging of drug diffusion and release from Pluronic F127 hydrogels. Eur J Pharm Sci. 2011;43:236–43.

    Article  PubMed  CAS  Google Scholar 

  25. Pajander J, Baldursdottir S, Rantanen J, Ostergaard J. Behaviour of HPMC compacts investigated using UV-imaging. Int J Pharm. 2012;427:345–53.

    Article  PubMed  CAS  Google Scholar 

  26. Hulse WL, Gray J, Forbes RT. A discriminatory intrinsic dissolution study using UV area imaging analysis to gain additional insights into the dissolution behaviour of active pharmaceutical ingredients. Int J Pharm. 2012;434:133–9.

    Article  PubMed  CAS  Google Scholar 

  27. Ostergaard J, Jensen H. Simultaneous evaluation of ligand binding properties and protein size by electrophoresis and Taylor dispersion in capillaries. Anal Chem. 2009;81:8644–8.

    Article  PubMed  Google Scholar 

  28. Ye FB, Jensen H, Larsen SW, Yaghmur A, Larsen C, Ostergaard J. Measurement of drug diffusivities in pharmaceutical solvents using Taylor dispersion analysis. J Pharm Biomed. 2012;61:176–83.

    Article  CAS  Google Scholar 

  29. Gordon S, Naelapää K, Rantanen J, Selen A, Müllertz A, Østergaard J. Real-time dissolution behavior of furosemide in biorelevant media as determined by UV imaging. Pharm Dev Technol. doi:10.3109/10837450.2012.737808.

  30. Zhang W, Stone HA, Sherwood JD. Mass transfer at a microelectrode in channel flow. J Phys Chem-Us. 1996;100:9462–4.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Jensen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boetker, J.P., Rantanen, J., Rades, T. et al. A New Approach to Dissolution Testing by UV Imaging and Finite Element Simulations. Pharm Res 30, 1328–1337 (2013). https://doi.org/10.1007/s11095-013-0972-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-0972-0

KEY WORDS

Navigation