Skip to main content

Advertisement

Log in

MicroRNA-302 Replacement Therapy Sensitizes Breast Cancer Cells to Ionizing Radiation

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Solid tumors can be resistant or develop resistance to radiotherapy. The purpose of this study is to explore whether microRNA-302 is involved in radioresistance and can be exploited as a sensitizer to enhance sensitivity of breast cancer cells to radiation therapy.

Methods

MiR-302 expression levels in radioresistant cell lines were analyzed in comparison with their parent cell lines. Furthermore, we investigated whether enforced expression of miR-302 sensitized radioresistant breast cancer cells to ionizing radiation in vitro and in vivo.

Results

MiR-302 was downregulated in irradiated breast cancer cells. Additionally, the expression levels of miR-302a were inversely correlated with those of AKT1 and RAD52, two critical regulators of radioresistance. More promisingly, miR-302a sensitized radioresistant breast cancer cells to radiation therapy in vitro and in vivo and reduced the expression of AKT1 and RAD52.

Conclusion

Our findings demonstrated that decreased expression of miR-302 confers radioresistance and restoration of miR-302 baseline expression sensitizes breast cancer cells to radiotherapy. These data suggest that miR-302 is a potential sensitizer to radiotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AKT:

protein kinase B

Gy:

gray

miRNA:

microRNA

RAD52:

a protein, encoded by the RAD52 gene, important for DNA double-strand break repair and homologous recombination

RT-PCR:

reverse transcription polymerase chain reaction.

siRNA:

small interfering RNA

REFERENCES

  1. Overgaard M. Radiotherapy as part of a multidisciplinary treatment strategy in early breast cancer. Eur J Cancer. 2001;37 Suppl 7:S33–43.

    Article  PubMed  Google Scholar 

  2. Croce CM, Calin GA. miRNAs, cancer, and stem cell division. Cell. 2005;122(1):6–7.

    Article  PubMed  CAS  Google Scholar 

  3. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.

    Article  PubMed  CAS  Google Scholar 

  4. Ambros V. microRNAs: tiny regulators with great potential. Cell. 2001;107(7):823–6.

    Article  PubMed  CAS  Google Scholar 

  5. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435(7043):834–8.

    Article  PubMed  CAS  Google Scholar 

  6. Slack FJ, Weidhaas JB. MicroRNAs as a potential magic bullet in cancer. Future Oncol. 2006;2(1):73–82.

    Article  PubMed  CAS  Google Scholar 

  7. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A. 2005;102(39):13944–9.

    Article  PubMed  CAS  Google Scholar 

  8. Jiang J, Lee EJ, Gusev Y, Schmittgen TD. Real-time expression profiling of microRNA precursors in human cancer cell lines. Nucleic Acids Res. 2005;33(17):5394–403.

    Article  PubMed  CAS  Google Scholar 

  9. Dickins RA, Hemann MT, Zilfou JT, Simpson DR, Ibarra I, Hannon GJ, et al. Probing tumor phenotypes using stable and regulated synthetic microRNA precursors. Nat Genet. 2005;37(11):1289–95.

    PubMed  CAS  Google Scholar 

  10. Tsuda N, Kawano K, Efferson CL, Ioannides CG. Synthetic microRNA and double-stranded RNA targeting the 3′-untranslated region of HER-2/neu mRNA inhibit HER-2 protein expression in ovarian cancer cells. Int J Oncol. 2005;27(5):1299–306.

    PubMed  CAS  Google Scholar 

  11. Weidhaas JB, Babar I, Nallur SM, Trang P, Roush S, Boehm M, et al. MicroRNAs as potential agents to alter resistance to cytotoxic anticancer therapy. Cancer Res. 2007;67(23):11111–6.

    Article  PubMed  CAS  Google Scholar 

  12. Josson S, Sung SY, Lao K, Chung LW, Johnstone PA. Radiation modulation of microRNA in prostate cancer cell lines. Prostate. 2008;68(15):1599–606.

    Article  PubMed  CAS  Google Scholar 

  13. Yan D, Ng WL, Zhang X, Wang P, Zhang Z, Mo YY, et al. Targeting DNA-PKcs and ATM with miR-101 sensitizes tumors to radiation. PLoS One. 2010;5(7):e11397.

    Article  PubMed  Google Scholar 

  14. Liang Z, Wu H, Xia J, Li Y, Zhang Y, Huang K, et al. Involvement of miR-326 in chemotherapy resistance of breast cancer through modulating expression of multidrug resistance-associated protein 1. Biochem Pharmacol. 2010;79(6):817–24.

    Article  PubMed  CAS  Google Scholar 

  15. Liang Z, Wu T, Lou H, Yu X, Taichman RS, Lau SK, et al. Inhibition of breast cancer metastasis by selective synthetic polypeptide against CXCR4. Cancer Res. 2004;64(12):4302–8.

    Article  PubMed  CAS  Google Scholar 

  16. Liang Z, Brooks J, Willard M, Liang K, Yoon Y, Kang S, et al. CXCR4/CXCL12 axis promotes VEGF-mediated tumor angiogenesis through Akt signaling pathway. Biochem Biophys Res Commun. 2007;359(3):716–22.

    Article  PubMed  CAS  Google Scholar 

  17. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods. 2001;25(4):402–8.

    Article  PubMed  CAS  Google Scholar 

  18. Zhu H, Wu H, Liu X, Evans BR, Medina DJ, Liu CG, et al. Role of MicroRNA miR-27a and miR-451 in the regulation of MDR1/P-glycoprotein expression in human cancer cells. Biochem Pharmacol. 2008;76(5):582–8.

    Article  PubMed  CAS  Google Scholar 

  19. Kovalchuk O, Filkowski J, Meservy J, Ilnytskyy Y, Tryndyak VP, Chekhun VF, et al. Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Mol Cancer Ther. 2008;7(7):2152–9.

    Article  PubMed  CAS  Google Scholar 

  20. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6(11):857–66.

    Article  PubMed  CAS  Google Scholar 

  21. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 2006;34(Database issue):D140–4.

    Article  PubMed  CAS  Google Scholar 

  22. Jackson RJ, Standart N. How do microRNAs regulate gene expression? Sci STKE. 2007;2007(367):re1.

    Article  PubMed  Google Scholar 

  23. Djuranovic S, Nahvi A, Green R. A parsimonious model for gene regulation by miRNAs. Science. 2011;331(6017):550–3.

    Article  PubMed  CAS  Google Scholar 

  24. Schuurbiers OC, Kaanders JH, van der Heijden HF, Dekhuijzen RP, Oyen WJ, Bussink J. The PI3-K/AKT-pathway and radiation resistance mechanisms in non-small cell lung cancer. J Thorac Oncol. 2009;4(6):761–7.

    Article  PubMed  Google Scholar 

  25. Bussink J, van der Kogel AJ, Kaanders JH. Activation of the PI3-K/AKT pathway and implications for radioresistance mechanisms in head and neck cancer. Lancet Oncol. 2008;9(3):288–96.

    Article  PubMed  CAS  Google Scholar 

  26. Jameel JK, Rao VS, Cawkwell L, Drew PJ. Radioresistance in carcinoma of the breast. Breast. 2004;13(6):452–60.

    Article  PubMed  CAS  Google Scholar 

  27. Mortensen UH, Lisby M, Rothstein R. Rad52. Curr Biol. 2009;19(16):R676–7.

    Article  PubMed  CAS  Google Scholar 

  28. Van Dyck E, Stasiak AZ, Stasiak A, West SC. Binding of double-strand breaks in DNA by human Rad52 protein. Nature. 1999;398(6729):728–31.

    Article  PubMed  Google Scholar 

  29. Symington LS. Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol Mol Biol Rev. 2002;66(4):630–70.

    Article  PubMed  CAS  Google Scholar 

  30. Benson FE, Baumann P, West SC. Synergistic actions of Rad51 and Rad52 in recombination and DNA repair. Nature. 1998;391(6665):401–4.

    Article  PubMed  CAS  Google Scholar 

  31. Shinohara A, Ogawa T. Stimulation by Rad52 of yeast Rad51-mediated recombination. Nature. 1998;391(6665):404–7.

    Article  PubMed  CAS  Google Scholar 

  32. Zhang B, Pan X, Cobb GP, Anderson TA. microRNAs as oncogenes and tumor suppressors. Dev Biol. 2007;302(1):1–12.

    Article  PubMed  CAS  Google Scholar 

  33. Manikandan J, Aarthi JJ, Kumar SD, Pushparaj PN. Oncomirs: the potential role of non-coding microRNAs in understanding cancer. Bioinformation. 2008;2(8):330–4.

    Article  PubMed  Google Scholar 

  34. Stenvang J, Silahtaroglu AN, Lindow M, Elmen J, Kauppinen S. The utility of LNA in microRNA-based cancer diagnostics and therapeutics. Semin Cancer Biol. 2008;18(2):89–102.

    Article  PubMed  CAS  Google Scholar 

  35. Love TM, Moffett HF, Novina CD. Not miR-ly small RNAs: big potential for microRNAs in therapy. J Allergy Clin Immunol. 2008;121(2):309–19.

    Article  PubMed  CAS  Google Scholar 

  36. Gaur A, Jewell DA, Liang Y, Ridzon D, Moore JH, Chen C, et al. Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. Cancer Res. 2007;67(6):2456–68.

    Article  PubMed  CAS  Google Scholar 

  37. Kumar MS, Lu J, Mercer KL, Golub TR, Jacks T. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet. 2007;39(5):673–7.

    Article  PubMed  CAS  Google Scholar 

  38. Esquela-Kerscher A, Trang P, Wiggins JF, Patrawala L, Cheng A, Ford L, et al. The let-7 microRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle. 2008;7(6):759–64.

    Article  PubMed  CAS  Google Scholar 

  39. Kumar MS, Erkeland SJ, Pester RE, Chen CY, Ebert MS, Sharp PA, et al. Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc Natl Acad Sci U S A. 2008;105(10):3903–8.

    Article  PubMed  CAS  Google Scholar 

  40. Doench JG, Sharp PA. Specificity of microRNA target selection in translational repression. Genes Dev. 2004;18(5):504–11.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This study was financially supported by the Department of Defense Breast Cancer Program Concept Award (BC052118) to ZL as well as a Research Grant from NIH NCI (1R01CA109366) to HS. We acknowledge Dr. Ya Wang for stimulating discussions. We thank Hongyan Wang and Ping Wang for technical assistance. The authors thank Jessica Paulishen for proof-reading.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhongxing Liang or Hyunsuk Shim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, Z., Ahn, J., Guo, D. et al. MicroRNA-302 Replacement Therapy Sensitizes Breast Cancer Cells to Ionizing Radiation. Pharm Res 30, 1008–1016 (2013). https://doi.org/10.1007/s11095-012-0936-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0936-9

KEY WORDS

Navigation