Skip to main content

Advertisement

Log in

The Impact of Glycosylation on the Pharmacokinetics of a TNFR2:Fc Fusion Protein Expressed in Glycoengineered Pichia Pastoris

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

P. pastoris has previously been genetically engineered to generate strains that are capable of producing mammalian-like glycoforms. Our objective was to investigate the correlation between sialic acid content and pharmacokinetic properties of recombinant TNFR2:Fc fusion proteins generated in glycoengineered P. pastoris strains.

Methods

TNFR2:Fc fusion proteins were generated with varying degrees of sialic acid content. The pharmacokinetic properties of these proteins were assessed by intravenous and subcutaneous routes of administration in rats. The binding of these variants to FcRn were also evaluated for possible correlations between in vitro binding and in vivo PK.

Results

The pharmacokinetic profiles of recombinant TNFR2:Fc produced in P. pastoris demonstrated a direct positive correlation between the extent of glycoprotein sialylation and in vivo pharmacokinetic properties. Furthermore, recombinant TNFR2:Fc produced in glycoengineered Pichia, with a similar sialic acid content to CHO-produced etanercept, demonstrated similar in vivo pharmacokinetic properties to the commercial material. In vitro surface plasmon resonance FcRn binding at pH6.0 showed an inverse relationship between sialic acid content and receptor binding affinity, with the higher affinity binders having poorer in vivo PK profiles.

Conclusions

Sialic acid content is a critical attribute for modulating the pharmacokinetics of recombinant TNFR2:Fc produced in glycoengineered P. pastoris.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ASGPR:

asialoglycoprotein receptor

AUC:

area under the curve

BR3-Fc:

B cell-activating factor receptor 3 (BR3) Fc fusion protein

CHO:

Chinese hamster ovary

Fc:

crystallizable fragment of antibody

FcRn:

neonatal Fc receptor

GlcNAc:

n-acetylglucosamine

IgG1:

immunoglobulin G subclass 1

IMID:

immune-mediated inflammatory disease

IV:

intravenous

LFA3TIP:

lymphocyte function-associated molecule 3 Fc fusion protein

PK:

pharmacokinetics

rhEPO:

recombinant human erythropoietin

SC:

subcutaneous

TNF:

tumor necrosis factor

TNFR2:

tumor necrosis factor receptor 2

TSA:

total sialic acid content

REFERENCES

  1. Keystone EC, Ware CF. Tumor necrosis factor and anti-tumor necrosis factor therapies. J Rheumatol Suppl. 2010;85:27–39.

    Article  CAS  PubMed  Google Scholar 

  2. Thalayasingam N, Isaacs JD. Anti-TNF therapy. Best Pract Res Clin Rheumatol. 2011;25(4):549–67.

    Article  CAS  PubMed  Google Scholar 

  3. Walsh G. Biopharmaceutical benchmarks 2010. Nat Biotechnol. 2010;28(9):917–24.

    Article  CAS  PubMed  Google Scholar 

  4. Mohler KM, Torrance DS, Smith CA, Goodwin RG, Stremler KE, Fung VP, et al. Soluble tumor necrosis factor (TNF) receptors are effective therapeutic agents in lethal endotoxemia and function simultaneously as both TNF carriers and TNF antagonists. J Immunol. 1993;151(3):1548–61.

    CAS  PubMed  Google Scholar 

  5. Pennica D, Lam VT, Weber RF, Kohr WJ, Basa LJ, Spellman MW, et al. Biochemical characterization of the extracellular domain of the 75-kilodalton tumor necrosis factor receptor. Biochemistry. 1993;32(12):3131–8.

    Article  CAS  PubMed  Google Scholar 

  6. Tesar DB, Bjorkman PJ. An intracellular traffic jam: Fc receptor-mediated transport of immunoglobulin G. Curr Opin Struct Biol. 2010;20(2):226–33.

    Article  CAS  PubMed  Google Scholar 

  7. Punt PJ, van Biezen N, Conesa A, Albers A, Mangnus J, van den Hondel C. Filamentous fungi as cell factories for heterologous protein production. Trends Biotechnol. 2002;20(5):200–6.

    Article  CAS  PubMed  Google Scholar 

  8. Choi BK, Bobrowicz P, Davidson RC, Hamilton SR, Kung DH, Li H, et al. Use of combinatorial genetic libraries to humanize N-linked glycosylation in the yeast Pichia pastoris. Proc Natl Acad Sci U S A. 2003;100(9):5022–7.

    Article  CAS  PubMed  Google Scholar 

  9. Hamilton SR, Bobrowicz P, Bobrowicz B, Davidson RC, Li H, Mitchell T, et al. Production of complex human glycoproteins in yeast. Science. 2003;301(5637):1244–6.

    Article  CAS  PubMed  Google Scholar 

  10. Bobrowicz P, Davidson RC, Li H, Potgieter TI, Nett JH, Hamilton SR, et al. Engineering of an artificial glycosylation pathway blocked in core oligosaccharide assembly in the yeast Pichia pastoris: production of complex humanized glycoproteins with terminal galactose. Glycobiology. 2004;14(9):757–66.

    Article  CAS  PubMed  Google Scholar 

  11. Hamilton SR, Davidson RC, Sethuraman N, Nett JH, Jiang Y, Rios S, et al. Humanization of yeast to produce complex terminally sialylated glycoproteins. Science. 2006;313(5792):1441–3.

    Article  CAS  PubMed  Google Scholar 

  12. Hopkins D, Gomathinayagam S, Rittenhour AM, Du M, Hoyt E, Karaveg K, et al. Elimination of beta-mannose glycan structures in Pichia pastoris. Glycobiology. 2011;21(12):1616–26.

    Article  CAS  PubMed  Google Scholar 

  13. Lowy PH, Keighley G, Borsook H. Inactivation of erythropoietin by neuraminidase and by mild substitution reactions. Nature. 1960;185:102–3.

    Article  CAS  PubMed  Google Scholar 

  14. Lukowsky WA, Painter RH. Studies on the role of sialic acid in the physical and biological properties of erythropoietin. Can J Biochem. 1972;50(8):909–17.

    Article  CAS  PubMed  Google Scholar 

  15. Goldwasser E, Kung CK, Eliason J. On the mechanism of erythropoietin-induced differentiation. 13. The role of sialic acid in erythropoietin action. J Biol Chem. 1974;249(13):4202–6.

    CAS  PubMed  Google Scholar 

  16. Stadheim TA, Li H, Kett W, Burnina IN, Gerngross TU. Use of high-performance anion exchange chromatography with pulsed amperometric detection for O-glycan determination in yeast. Nat Protoc. 2008;3(6):1026–31.

    Article  CAS  PubMed  Google Scholar 

  17. Wang W, Lu P, Fang Y, Hamuro L, Pittman T, Carr B, et al. Monoclonal antibodies with identical Fc sequences can bind to FcRn differentially with pharmacokinetic consequences. Drug Metab Dispos. 2011;39(9):1469–77.

    Article  CAS  PubMed  Google Scholar 

  18. Liu L, Stadheim A, Hamuro L, Pittman T, Wang W, Zha D, et al. Pharmacokinetics of IgG1 monoclonal antibodies produced in humanized Pichia pastoris with specific glycoforms: a comparative study with CHO produced materials. Biologicals. 2011;39(4):205–10.

    Article  CAS  PubMed  Google Scholar 

  19. Suzuki T, Ishii-Watabe A, Tada M, Kobayashi T, Kanayasu-Toyoda T, Kawanishi T, et al. Importance of neonatal FcR in regulating the serum half-life of therapeutic proteins containing the Fc domain of human IgG1: a comparative study of the affinity of monoclonal antibodies and Fc-fusion proteins to human neonatal FcR. J Immunol. 2010;184(4):1968–76.

    Article  CAS  PubMed  Google Scholar 

  20. Beck A, Reichert JM. Therapeutic Fc-fusion proteins and peptides as successful alternatives to antibodies. MAbs. 2011;3(5):415–6.

    Article  PubMed  Google Scholar 

  21. Kontermann RE. Strategies for extended serum half-life of protein therapeutics. Curr Opin Biotechnol. 2011;22(6):868–76.

    Article  CAS  PubMed  Google Scholar 

  22. Wang YM, Sloey B, Wong T, Khandelwal P, Melara R, Sun YN. Investigation of the pharmacokinetics of romiplostim in rodents with a focus on the clearance mechanism. Pharm Res. 2011;28(8):1931–8.

    Article  CAS  PubMed  Google Scholar 

  23. Datta-Mannan A, Chow CK, Dickinson C, Driver D, Lu J, Witcher DR, et al. FcRn affinity-pharmacokinetic relationship of five human IgG4 antibodies engineered for improved in vitro FcRn binding properties in cynomolgus monkeys. Drug Metab Dispos. 2012;40(8):1545–55.

    Article  CAS  PubMed  Google Scholar 

  24. Datta-Mannan A, Witcher DR, Tang Y, Watkins J, Jiang W, Wroblewski VJ. Humanized IgG1 variants with differential binding properties to the neonatal Fc receptor: relationship to pharmacokinetics in mice and primates. Drug Metab Dispos. 2007;35(1):86–94.

    Article  CAS  PubMed  Google Scholar 

  25. Ober RJ, Radu CG, Ghetie V, Ward ES. Differences in promiscuity for antibody-FcRn interactions across species: implications for therapeutic antibodies. Int Immunol. 2001;13(12):1551–9.

    Article  CAS  PubMed  Google Scholar 

  26. Andersen JT, Daba MB, Berntzen G, Michaelsen TE, Sandlie I. Cross-species binding analyses of mouse and human neonatal Fc receptor show dramatic differences in immunoglobulin G and albumin binding. J Biol Chem. 2010;285(7):4826–36.

    Article  PubMed  Google Scholar 

  27. Vaughn DE, Bjorkman PJ. High-affinity binding of the neonatal Fc receptor to its IgG ligand requires receptor immobilization. Biochemistry. 1997;36(31):9374–80.

    Article  CAS  PubMed  Google Scholar 

  28. Schwartz AL. Trafficking of asialoglycoproteins and the asialoglycoprotein receptor. Target Diagn Ther. 1991;4:3–39.

    CAS  Google Scholar 

  29. Stahl PD, Ezekowitz RA. The mannose receptor is a pattern recognition receptor involved in host defense. Curr Opin Immunol. 1998;10(1):50–5.

    Article  CAS  PubMed  Google Scholar 

  30. Egrie JC, Browne JK. Development and characterization of novel erythropoiesis stimulating protein (NESP). Nephrol Dial Transplant. 2001;16 Suppl 3:3–13.

    Article  PubMed  Google Scholar 

  31. Meier W, Gill A, Rogge M, Dabora R, Majeau GR, Oleson FB, et al. Immunomodulation by LFA3TIP, an LFA-3/IgG1 fusion protein: cell line dependent glycosylation effects on pharmacokinetics and pharmacodynamic markers. Ther Immunol. 1995;2(3):159–71.

    CAS  PubMed  Google Scholar 

  32. Stefanich EG, Ren S, Danilenko DM, Lim A, Song A, Iyer S, et al. Evidence for an asialoglycoprotein receptor on nonparenchymal cells for O-linked glycoproteins. J Pharmacol Exp Ther. 2008;327(2):308–15.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The authors would like to thank members of the Strain Development, Fermentation, Purification and Analytical groups of Biologics Discovery (GlycoFi, Merck), that supported this study. We would also like to thank Tamara Pittman and Scott Faulty for their in vivo support, and Dr Paul Peloso for reviewing this manuscript. All funding for this project was provided by Merck & Co., Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen R. Hamilton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, L., Gomathinayagam, S., Hamuro, L. et al. The Impact of Glycosylation on the Pharmacokinetics of a TNFR2:Fc Fusion Protein Expressed in Glycoengineered Pichia Pastoris . Pharm Res 30, 803–812 (2013). https://doi.org/10.1007/s11095-012-0921-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0921-3

KEY WORDS

Navigation