Skip to main content

Advertisement

Log in

Skin Permeation of Small-Molecule Drugs, Macromolecules, and Nanoparticles Mediated by a Fractional Carbon Dioxide Laser: The Role of Hair Follicles

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To evaluate skin permeation enhancement mediated by fractional laser for different permeants, including hydroquinone, imiquimod, fluorescein isothiocyanate-labeled dextran (FD), and quantum dots.

Methods

Skin received a single irradiation of a fractional CO2 laser, using fluence of 2 or 4 mJ with densities of 100 ∼ 400 spots/cm2. In vitro and in vivo skin penetration experiments were performed. Fluorescence and confocal microscopies for imaging delivery pathways were used.

Results

The laser enhanced flux of small-molecule drugs 2 ∼ 5-fold compared to intact skin. A laser fluence of 4 mJ with a 400-spot/cm2 density promoted FD flux at 20 and 40 kDa from 0 (passive transport) to 0.72 and 0.43 nmol/cm2/h, respectively. Microscopic images demonstrated a significant increase in fluorescence accumulation and penetration depth of macromolecules and nanoparticles after laser exposure. Predominant routes for laser-assisted delivery may be intercellular and follicular transport. CO2 laser irradiation produced 13-fold enhancement in follicular deposition of imiquimod. Laser-mediated follicular transport could deliver permeants to deeper strata. Skin barrier function as determined by transepidermal water loss completely recovered by 12 h after irradiation, much faster than conventional laser treatment (4 days).

Conclusions

Fractional laser could selectively enhance permeant targeting to follicles such as imiquimod and FD but not hydroquinone, indicating the importance of selecting feasible drugs for laser-assisted follicle delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. Davidson A, Al-Qallaf B, Das DB. Transdermal drug delivery by coated microneedles: geometry effects on effective skin thickness and drug permeability. Chem Eng Res Des. 2008;86:1196–206.

    Article  CAS  Google Scholar 

  2. Lee WR, Shen SC, Fang CL, Zhuo RZ, Fang JY. Topical delivery of methotrexate via skin pretreated with physical enhancement techniques: low-fluence erbium:YAG laser and electroporation. Lasers Surg Med. 2008;40:468–76.

    Article  PubMed  Google Scholar 

  3. Gómez C, Costela Á, Garćia-Moreno I, Llanes F, Teijón JM, Blance D. Laser treatments on skin enhancing and controlling transdermal delivery of 5-fluorouracil. Lasers Surg Med. 2008;40:6–12.

    Article  PubMed  Google Scholar 

  4. Pan TL, Wang PW, Lee WR, Fang CL, Chen CC, Huang CM, et al. Systematic evaluations of skin damage irradiated by an erbium:YAG laser: histopathologic analysis, proteomic profiles, and cellular response. J Dermatol Sci. 2010;58:8–18.

    Article  PubMed  CAS  Google Scholar 

  5. Tsai TH, Jee SH, Chan JY, Lee JN, Lee WR, Dong CY, et al. Visualizing laser-skin interaction in vivo by multiphoton microscopy. J Biomed Opt. 2009;14:024034.

    Article  PubMed  Google Scholar 

  6. Lee WR, Shen SC, Wang KH, Hu CH, Fang JY. The Effect of laser treatment on skin to enhance and control transdermal delivery of 5-fluorouracil. J Pharm Sci. 2002;91:1613–26.

    Article  PubMed  CAS  Google Scholar 

  7. Haak CS, Illes M, Paasch U, Hædersdal M. Histological evaluation of vertical laser channels from ablative fractional resurfacing: an ex vivo pig skin model. Lasers Med Sci. 2011;26:465–71.

    Article  Google Scholar 

  8. Allemann IB, Kaufman J. Fractional photothermolysis – an update. Lasers Med Sci. 2010;25:137–44.

    Article  Google Scholar 

  9. Carniol PJ, Harirchian S, Kelly E. Fractional CO2 laser resurfacing. Facial Plast Surg Clin N Am. 2011;19:247–51.

    Article  Google Scholar 

  10. Rendon MI, Gaviria JI. Review of skin-lightening agents. Dermatol Surg. 2005;31:886–9.

    Article  PubMed  CAS  Google Scholar 

  11. Metcalf S, Crowson AN, Naylor M, Haque R, Cornelison R. Imiquimod as an antiaging agent. J Am Acad Dermatol. 2007;56:422–5.

    Article  PubMed  Google Scholar 

  12. Kalluri H, Banga AK. Transdermal delivery of proteins. AAPS PharmSciTech. 2011;12:431–41.

    Article  PubMed  CAS  Google Scholar 

  13. Chiu TM, Huang CC, Lin TJ, Fang JY, Wu NL, Hung CF. In vitro and in vivo anti-photoaging effects of an isoflavone extract from soybean cake. J Ethnopharmacol. 2009;126:108–13.

    Article  PubMed  CAS  Google Scholar 

  14. Lee WR, Shen SC, Al-Suwayeh SA, Yang HH, Yuan CY, Fang JY. Laser-assisted topical drug delivery by using a low-fluence fractional laser: imiquimod and macromolecules. J Control Release. 2011;153:240–8.

    Article  PubMed  CAS  Google Scholar 

  15. Hsieh PW, Al-Suwayeh SA, Fang CL, Lin CF, Chen CC, Fang JY. The co-drug of conjugated hydroquinone and azelaic acid to enhance topical skin targeting and decrease penetration through the skin. Eur J Pharm Biopharm. 2012;81:369–78.

    Article  PubMed  CAS  Google Scholar 

  16. Teichmann A, Jacobi U, Ossadnik M, Richter H, Koch S, Sterry W, et al. Differential stripping: determination of the amount of topically applied substances penetrated into the hair follicles. J Invest Dermatol. 2005;125:264–9.

    PubMed  CAS  Google Scholar 

  17. Chen X, Shah D, Kositratna G, Manstein D, Anderson RR, Wu MX. Facilitation of transcutaneous drug delivery and vaccine immunization by a safe laser technology. J Control Release. 2012;159:43–51.

    Article  PubMed  CAS  Google Scholar 

  18. Lee S, McAuliffe DJ, Flotte TJ, Kollias N, Doukas AG. Photomechanical transdermal delivery: the effect of laser confinement. Lasers Surg Med. 2001;28:344–7.

    Article  PubMed  CAS  Google Scholar 

  19. Donnelly RF, Morrow DIJ, McCarron PA, Woolfson AD, Morrissey A, Juzenas P, et al. Microneedle-mediated intradermal delivery of 5-aminolevulinic acid: potential for enhanced topical photodynamic therapy. J Control Release. 2008;129:154–62.

    Article  PubMed  CAS  Google Scholar 

  20. Lee WR, Shen SC, Lai HH, Hu CH, Fang JY. Transdermal drug delivery enhanced and controlled by erbium:YAG laser: a comparative study of lipophilic and hydrophilic drugs. J Control Release. 2001;75:155–66.

    Article  PubMed  CAS  Google Scholar 

  21. Cao D, Kitamura T, Todo H, Yoo SD, Sugibayashi K. Pretreatment effects of maxibustion on the skin permeation of FITC-dextran. Int J Pharm. 2008;354:117–25.

    Article  PubMed  CAS  Google Scholar 

  22. Maeba S, Otake S, Namikoshi J, Shibata Y, Hayakawa M, Abiko Y, et al. Transcutaneous immunization with a 40-kDa outer membrane protein of Porphyromonas gingivalis induces specific antibodies which inhibit coaggregation by P. gingivalis. Vaccine. 2005;23:2513–21.

    Article  PubMed  CAS  Google Scholar 

  23. Lanke SSS, Kolli CS, Strom JG, Banga AK. Enhanced transdermal delivery of low molecular weight heparin by barrier perturbation. Int J Pharm. 2009;365:26–33.

    Article  PubMed  CAS  Google Scholar 

  24. Lee WR, Shen SC, Pai MH, Yang HH, Yuan CY, Fang JY. Fractional laser as a tool to enhance the skin permeation of 5-aminolevulinic acid with minimal skin disruption: a comparison with conventional erbium:YAG laser. J Control Release. 2010;145:124–33.

    Article  PubMed  CAS  Google Scholar 

  25. Lombry C, Dujardin N, Préat V. Transdermal delivery of macromolecules using skin electroporation. Pharm Res. 2000;17:32–7.

    Article  PubMed  CAS  Google Scholar 

  26. Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008;26:1261–8.

    Article  PubMed  CAS  Google Scholar 

  27. Yoo KH, Lee JW, Li K, Kim BJ, Kim MN. Photodynamic therapy with methyl 5-aminolevulinate acid might be ineffective in recalcitrant alopecia totalis regardless of using a microneedle roller to increase skin penetration. Dermatol Surg. 2010;36:618–22.

    Article  PubMed  CAS  Google Scholar 

  28. Schön MP, Schön M. Imiquimod: mode of action. Br J Dermatol. 2007;157 Suppl 2:8–13.

    Article  PubMed  Google Scholar 

  29. Swanson N, Abramovits W, Berman B, Kulp J, Rigel DS, Levy S. Imiquimod 2.5% and 3.75% for the treatment of actinic keratoses: results of two placebo-controlled studies of daily application to the face and balding scalp for two 2-week cycles. J Am Acad Dermatol. 2010;62:582–90.

    Article  PubMed  CAS  Google Scholar 

  30. Bachhav YG, Heinrich A, Kalia YN. Using laser microporation to improve transdermal delivery of diclofenac: increasing bioavailability and the range of therapeutic applications. Eur J Pharm Biopharm. 2011;78:408–14.

    Article  PubMed  CAS  Google Scholar 

  31. Imura Y, Choda N, Matsuzaki K. Magainin 2 in action: distinct modes of membrane permeabilization in living bacterial and mammalian cells. Biophys J. 2008;95:5757–65.

    Article  PubMed  Google Scholar 

  32. Otberg N, Richter H, Schaefer H, Blume-Peytavi U, Sterry W, Lademann J. Variations of hair follicle size and distribution in different body sites. J Invest Dermatol. 2004;122:14–9.

    Article  PubMed  CAS  Google Scholar 

  33. Lademann J, Otberg N, Richter H, Weigmann HJ, Lindemann U, Schaefer H, et al. Investigation of follicular penetration of topically applied substances. Skin Pharmacol Physiol. 2001;14 Suppl 1:17–22.

    Article  Google Scholar 

  34. Fang JY, Lee WR, Shen SC, Wang HY, Fang CL, Hu CH. Transdermal delivery of macromolecules by erbium:YAG laser. J Control Release. 2004;100:75–85.

    Article  PubMed  CAS  Google Scholar 

  35. Shim J, Kang HS, Park WS, Han SH, Kim J, Chang IS. Transdermal delivery of minoxidil with block copolymer nanoparticles. J Control Release. 2004;97:477–84.

    PubMed  CAS  Google Scholar 

  36. Otberg N, Petzelt A, Rasulev U, Hagemeister T, Linscheid M, Sinkgraven R, et al. The role of hair follicles in the percutaneous absorption of caffeine. Br J Clin Pharmacol. 2007;65:488–92.

    Article  PubMed  Google Scholar 

  37. Jeong SH, Kim JH, Yi SM, Lee JP, Kim JH, Sohn KH, et al. Assessment of penetration of quantum dots through in vitro and in vivo human skin using the human skin equivalent model and the tape stripping method. Biochem Biophys Res Comm. 2010;394:612–5.

    Article  PubMed  CAS  Google Scholar 

  38. Gratieri T, Schaefer UF, Jing L, Gao M, Kostka KH, Lopez RFV, et al. Penetration of quantum dot particles through human skin. J Biomed Nanotechnol. 2010;6:586–95.

    Article  PubMed  CAS  Google Scholar 

  39. Zhang LW, Monteiro-Riviere NA. Assessment of quantum dot penetration into intact, tape-stripped, abraded and flexed rat skin. Skin Pharmacol Physiol. 2008;21:166–80.

    Article  PubMed  Google Scholar 

  40. Lademann J, Richter H, Teichmann A, Otberg N, Blume-Peytavi U, Luengo J, et al. Nanoparticles – an efficient carrier for drug delivery into the hair follicles. Eur J Pharm Biopharm. 2007;66:159–64.

    Article  PubMed  CAS  Google Scholar 

  41. Honma Y, Arai I, Sakurai T, Futaki N, Hashimoto Y, Sugimoto M, et al. Effects of indomethacin and dexamethasone on mechanical scratching-induced cutaneous barrier disruption in mice. Exp Dermatol. 2006;15:501–8.

    Article  PubMed  CAS  Google Scholar 

  42. Goldberg DJ, Berlin AL, Phelps R. Histologic and ultrastructural analysis of melasma after fractional resurfacing. Lasers Surg Med. 2008;40:134–8.

    Article  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This project was supported by the National Plan for Science and Technology in the Kingdom of Saudi Arabia (grant number: 10-NAN1030-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-You Fang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, WR., Shen, SC., Al-Suwayeh, S.A. et al. Skin Permeation of Small-Molecule Drugs, Macromolecules, and Nanoparticles Mediated by a Fractional Carbon Dioxide Laser: The Role of Hair Follicles. Pharm Res 30, 792–802 (2013). https://doi.org/10.1007/s11095-012-0920-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0920-4

KEY WORDS

Navigation