Skip to main content
Log in

Protected Graft Copolymer Excipient Leads to a Higher Acute Maximum Tolerated Dose and Extends Residence Time of Vasoactive Intestinal Peptide Significantly Better than Sterically Stabilized Micelles

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

An Erratum to this article was published on 09 May 2013

ABSTRACT

Purpose

To determine and compare pharmacokinetics and toxicity of two nanoformulations of Vasoactive Intestinal Peptide (VIP).

Methods

VIP was formulated using a micellar (Sterically Stabilized Micelles, SSM) and a polymer-based (Protected Graft Copolymer, PGC) nanocarrier at various loading percentages. VIP binding to the nanocarriers, pharmacokinetics, blood pressure, blood chemistry, and acute maximum tolerated dose (MTD) of the formulations after injection into BALB/c mice were determined.

Results

Both formulations significantly extend in vivo residence time compared to unformulated VIP. Formulation toxicity is dependent on loading percentage, showing major differences between the two carrier types. Both formulations increase in vivo potency of unformulated VIP and show acute MTDs at least 140 times lower than unformulated VIP, but still at least 100 times higher than the anticipated highest human dose, 1–5 μg/kg. These nanocarriers prevented a significant drop in arterial blood pressure compared to unformulated VIP.

Conclusions

While both carriers enhance in vivo residence time compared to unformulated VIP and reduce the drop in blood pressure immediately after injection, PGC is the excipient of choice to extend residence time and improve the safety of potent therapeutic peptides such as VIP.

Pharmacokinetics of VIP after SC injection of 100 μg/kg in BALB/c mice (n = 5). (a) Overview of entire 72 h sampling period, (b) the first 6 h shown in detail. VIP quantitation in serum samples was by competitive ELISA. LOD: level of detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

MRT:

mean residence time

MTD:

maximum tolerated dose

PGC:

protected graft copolymer

PK:

pharmacokinetics

SSM:

sterically stabilized micelles

VIP:

vasoactive intestinal peptide

REFERENCES

  1. Said SI, Mutt V. Isolation from porcine-intestinal wall of a vasoactive octacosapeptide related to secretin and to glucagon. Eur J Biochem. 1972;28(2):199–204.

    Article  PubMed  CAS  Google Scholar 

  2. Linder S, et al. Structure and expression of the gene encoding the vasoactive intestinal peptide precursor. Proc Natl Acad Sci U S A. 1987;84(2):605–9.

    Article  PubMed  CAS  Google Scholar 

  3. Bogdanov Jr AA, et al. Protected graft copolymer (PGC) in imaging and therapy: a platform for the delivery of covalently and non-covalently bound drugs. Theranostics. 2012;2(6):553–76.

    Article  PubMed  CAS  Google Scholar 

  4. Castillo GM, Reichstetter S, Bolotin EM. Extending residence time and stability of peptides by protected graft copolymer (PGC) excipient: GLP-1 example. Pharm Res. 2012;29(1):306–18.

    Article  PubMed  CAS  Google Scholar 

  5. Delgado M, et al. Vasoactive intestinal peptide prevents experimental arthritis by downregulating both autoimmune and inflammatory components of the disease. Nat Med. 2001;7(5):563–8.

    Article  PubMed  CAS  Google Scholar 

  6. Gonzalez-Rey E, et al. Vasoactive intestinal peptide induces CD4+, CD25+ T regulatory cells with therapeutic effect in collagen-induced arthritis. Arthritis Rheum. 2006;54(3):864–76.

    Article  PubMed  CAS  Google Scholar 

  7. Juarranz Y, et al. Protective effect of vasoactive intestinal peptide on bone destruction in the collagen-induced arthritis model of rheumatoid arthritis. Arthritis Res Ther. 2005;7(5):R1034–45.

    Article  PubMed  CAS  Google Scholar 

  8. Williams RO. Therapeutic effect of vasoactive intestinal peptide in collagen-induced arthritis. Arthritis Rheum. 2002;46(1):271–3.

    Article  PubMed  CAS  Google Scholar 

  9. Delgado M, et al. Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activation polypeptide (PACAP) protect mice from lethal endotoxemia through the inhibition of TNF-alpha and IL-6. J Immunol. 1999;162(2):1200–5.

    PubMed  CAS  Google Scholar 

  10. Chorny A, Delgado M. Neuropeptides rescue mice from lethal sepsis by down-regulating secretion of the late-acting inflammatory mediator high mobility group box 1. Am J Pathol. 2008;172(5):1297–307.

    Article  PubMed  CAS  Google Scholar 

  11. Li H, et al. Vasoactive intestinal polypeptide suppressed experimental autoimmune encephalomyelitis by inhibiting T helper 1 responses. J Clin Immunol. 2006;26(5):430–7.

    Article  PubMed  Google Scholar 

  12. Fernandez-Martin A, et al. Vasoactive intestinal peptide induces regulatory T cells during experimental autoimmune encephalomyelitis. Eur J Immunol. 2006;36(2):318–26.

    Article  PubMed  CAS  Google Scholar 

  13. Gonzalez-Rey E, et al. Therapeutic effect of vasoactive intestinal peptide on experimental autoimmune encephalomyelitis: down-regulation of inflammatory and autoimmune responses. Am J Pathol. 2006;168(4):1179–88.

    Article  PubMed  CAS  Google Scholar 

  14. Delgado M, et al. VIP and PACAP induce shift to a Th2 response by upregulating B7.2 expression. Ann N Y Acad Sci. 2000;921:68–78.

    Article  PubMed  CAS  Google Scholar 

  15. Chorny A, Gonzalez-Rey E, Delgado M. Regulation of dendritic cell differentiation by vasoactive intestinal peptide: therapeutic applications on autoimmunity and transplantation. Ann N Y Acad Sci. 2006;1088:187–94.

    Article  PubMed  CAS  Google Scholar 

  16. Chorny A, et al. Signaling mechanisms of vasoactive intestinal peptide in inflammatory conditions. Regul Pept. 2006;137(1–2):67–74.

    Article  PubMed  CAS  Google Scholar 

  17. Fernandez-Martin A, et al. VIP prevents experimental multiple sclerosis by downregulating both inflammatory and autoimmune components of the disease. Ann N Y Acad Sci. 2006;1070:276–81.

    Article  PubMed  CAS  Google Scholar 

  18. Gonzalez-Rey E, Delgado M. Vasoactive intestinal peptide and regulatory T-cell induction: a new mechanism and therapeutic potential for immune homeostasis. Trends Mol Med. 2007;13(6):241–51.

    Article  PubMed  CAS  Google Scholar 

  19. Gomariz RP, et al. Regulation of TLR expression, a new perspective for the role of VIP in immunity. Peptides. 2007;28(9):1825–32.

    Article  PubMed  CAS  Google Scholar 

  20. Domschke S, et al. Vasoactive intestinal peptide in man: pharmacokinetics, metabolic and circulatory effects. Gut. 1978;19(11):1049–53.

    Article  PubMed  CAS  Google Scholar 

  21. Conti A, et al. Vasoactive intestinal polypeptide and dopamine: effect on prolactin secretion in normal women and patients with microprolactinomas. Neuroendocrinology. 1987;46(3):241–5.

    Article  PubMed  CAS  Google Scholar 

  22. Spadaro AC, et al. A convenient manual trinitrobenzenesulfonic acid method for monitoring amino acids and peptides in chromatographic column effluents. Anal Biochem. 1979;96(2):317–21.

    Article  PubMed  CAS  Google Scholar 

  23. Lapidot Y, Rappoport S, Wolman Y. Use of esters of N-hydroxysuccinimide in the synthesis of N-acylamino acids. J Lipid Res. 1967;8(2):142–5.

    PubMed  CAS  Google Scholar 

  24. Ashok B, et al. Effects of peptide molecular mass and PEG chain length on the vasoreactivity of VIP and PACAP(1-38) in pegylated phospholipid micelles. Peptides. 2004;25(8):1253–8.

    Article  PubMed  CAS  Google Scholar 

  25. Lim SB, Rubinstein I, Onyuksel H. Freeze drying of peptide drugs self-associated with long-circulating, biocompatible and biodegradable sterically stabilized phospholipid nanomicelles. Int J Pharm. 2008;356(1–2):345–50.

    Article  PubMed  CAS  Google Scholar 

  26. Castillo GM, et al. Sulfate content and specific glycosaminoglycan backbone of perlecan are critical for perlecan's enhancement of islet amyloid polypeptide (amylin) fibril formation. Diabetes. 1998;47(4):612–20.

    Article  PubMed  CAS  Google Scholar 

  27. Castillo GM, et al. Perlecan binds to the beta-amyloid proteins (A beta) of Alzheimer's disease, accelerates A beta fibril formation, and maintains A beta fibril stability. J Neurochem. 1997;69(6):2452–65.

    Article  PubMed  CAS  Google Scholar 

  28. Talke H, Schubert GE. Enzymatic urea determination in the blood and serum in the Warburg optical test. Klin Wochenschr. 1965;43:174–5.

    Article  PubMed  CAS  Google Scholar 

  29. Larsen K. Creatinine assay by a reaction-kinetic principle. Clin Chim Acta. 1972;41:209–17.

    Article  PubMed  CAS  Google Scholar 

  30. Foster PW, Rick JJ, Wolfson WQ. Studies in serum proteins. VI. The extension of the standard biuret method to the estimation of total protein in urine. J Lab Clin Med. 1952;39(4):618–23.

    PubMed  CAS  Google Scholar 

  31. Goa J. A micro biuret method for protein determination; determination of total protein in cerebrospinal fluid. Scand J Clin Lab Invest. 1953;5(3):218–22.

    Article  PubMed  CAS  Google Scholar 

  32. Sister Mary W, Hess WC. A comparison of total serum protein and albumin values as determined by the micro-Kjeldahl, Biuret, and Folin methods. Bull Georgetown Univ Med Cent. 1952;6(2):34–5.

    Google Scholar 

  33. Drupt F, et al. Serum albumin assay by bromocresol green method: application to different automatic apparatus. Ann Pharm Fr. 1974;32(5):249–56.

    PubMed  CAS  Google Scholar 

  34. Rasanayagam LJ, et al. Measurement of urine albumin using bromocresol green. Clin Chim Acta. 1973;44(1):53–7.

    Article  PubMed  CAS  Google Scholar 

  35. Webster D, Bignell AH, Attwood EC. An assessment of the suitability of bromocresol green for the determination of serum albumin. Clin Chim Acta. 1974;53(1):101–8.

    Article  PubMed  CAS  Google Scholar 

  36. Bergmeyer HU, Scheibe P, Wahlefeld AW. Optimization of methods for aspartate aminotransferase and alanine aminotransferase. Clin Chem. 1978;24(1):58–73.

    PubMed  CAS  Google Scholar 

  37. Henry RJ, et al. Revised spectrophotometric methods for the determination of glutamic-oxalacetic transaminase, glutamic-pyruvic transaminase, and lactic acid dehydrogenase. Am J Clin Pathol. 1960;34:381–98.

    PubMed  CAS  Google Scholar 

  38. Mullon CJ, Langer R. Determination of conjugated and total bilirubin in serum of neonates, with use of bilirubin oxidase. Clin Chem. 1987;33(10):1822–5.

    PubMed  CAS  Google Scholar 

  39. Arleth L, et al. Detailed structure of hairy mixed micelles formed by phosphatidylcholine and PEGylated phospholipids in aqueous media. Langmuir. 2005;21(8):3279–90.

    Article  PubMed  CAS  Google Scholar 

  40. Sato T, et al. Poly(ethylene glycol)-conjugated phospholipids in aqueous micellar solutions: hydration, static structure, and interparticle interactions. J Phys Chem B. 2007;111(6):1393–401.

    Article  PubMed  CAS  Google Scholar 

  41. Onoue S, Yamada S, Yajima T. Bioactive analogues and drug delivery systems of vasoactive intestinal peptide (VIP) for the treatment of asthma/COPD. Peptides. 2007;28(9):1640–50.

    Article  PubMed  CAS  Google Scholar 

  42. Petkov V, et al. The vasoactive intestinal peptide receptor turnover in pulmonary arteries indicates an important role for VIP in the rat lung circulation. Ann N Y Acad Sci. 2006;1070:481–3.

    Article  PubMed  CAS  Google Scholar 

  43. Petkov V, et al. Vasoactive intestinal peptide as a new drug for treatment of primary pulmonary hypertension. J Clin Invest. 2003;111(9):1339–46.

    PubMed  CAS  Google Scholar 

  44. Sethi V, Onyuksel H, Rubinstein I. Liposomal vasoactive intestinal peptide. Methods Enzymol. 2005;391:377–95.

    Article  PubMed  CAS  Google Scholar 

  45. Jarhult J, Hellstrand P, Sundler F. Immunohistochemical localization and vascular effects of vasoactive intestinal polypeptide in skeletal muscle of the cat. Cell Tissue Res. 1980;207(1):55–64.

    Article  PubMed  CAS  Google Scholar 

  46. Gomariz RP, et al. VIP-PACAP system in immunity: new insights for multitarget therapy. Ann N Y Acad Sci. 2006;1070:51–74.

    Article  PubMed  CAS  Google Scholar 

  47. Laburthe M, Couvineau A, Tan V. Class II G protein-coupled receptors for VIP and PACAP: structure, models of activation and pharmacology. Peptides. 2007;28(9):1631–9.

    Article  PubMed  CAS  Google Scholar 

  48. Maeda H, et al. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release. 2000;65(1–2):271–84.

    Article  PubMed  CAS  Google Scholar 

  49. Caliceti P, Veronese FM. Pharmacokinetic and biodistribution properties of poly(ethylene glycol)-protein conjugates. Adv Drug Deliv Rev. 2003;55(10):1261–77.

    Article  PubMed  CAS  Google Scholar 

  50. Torchilin V. Lipid-Core Micelles for Target Drug Deliv. 2005.

  51. Torchilin VP. Block copolymer micelles as a solution for drug delivery problems. Expert Opinion on Therapeutic Patents. 2005;15(1):63–75.

    Article  CAS  Google Scholar 

  52. Supersaxo A, Hein WR, Steffen H. Effect of molecular weight on the lymphatic absorption of water-soluble compounds following subcutaneous administration. Pharm Res. 1990;7(2):167–9.

    Article  PubMed  CAS  Google Scholar 

  53. Chorny A, et al. Vasoactive intestinal peptide induces regulatory dendritic cells with therapeutic effects on autoimmune disorders. Proc Natl Acad Sci U S A. 2005;102(38):13562–7.

    Article  PubMed  CAS  Google Scholar 

  54. Chorny A, et al. Vasoactive intestinal peptide generates CD4 + CD25+ regulatory T cells in vivo: therapeutic applications in autoimmunity and transplantation. Ann N Y Acad Sci. 2006;1070:190–5.

    Article  PubMed  CAS  Google Scholar 

  55. Delgado M. Inhibition of interferon (IFN) gamma-induced Jak-STAT1 activation in microglia by vasoactive intestinal peptide: inhibitory effect on CD40, IFN-induced protein-10, and inducible nitric-oxide synthase expression. J Biol Chem. 2003;278(30):27620–9.

    Article  PubMed  CAS  Google Scholar 

  56. Delgado M, Ganea D. Vasoactive intestinal peptide inhibits IL-8 production in human monocytes by downregulating nuclear factor kappaB-dependent transcriptional activity. Biochem Biophys Res Commun. 2003;302(2):275–83.

    Article  PubMed  CAS  Google Scholar 

  57. Delgado M, et al. Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide stimulate the induction of Th2 responses by up-regulating B7.2 expression. J Immunol. 1999;163(7):3629–35.

    PubMed  CAS  Google Scholar 

  58. Delgado M, et al. VIP and PACAP inhibit IL-12 production in LPS-stimulated macrophages. Subsequent effect on IFNgamma synthesis by T cells. J Neuroimmunol. 1999;96(2):167–81.

    Article  PubMed  CAS  Google Scholar 

  59. Gonzalez-Rey E, et al. Vasoactive intestinal peptide generates human tolerogenic dendritic cells that induce CD4 and CD8 regulatory T cells. Blood. 2006;107(9):3632–8.

    Article  PubMed  CAS  Google Scholar 

  60. Gonzalez-Rey E, Delgado M. Therapeutic treatment of experimental colitis with regulatory dendritic cells generated with vasoactive intestinal peptide. Gastroenterology. 2006;131(6):1799–811.

    Article  PubMed  CAS  Google Scholar 

  61. Gutierrez-Canas I, et al. VIP down-regulates TLR4 expression and TLR4-mediated chemokine production in human rheumatoid synovial fibroblasts. Rheumatology (Oxford). 2006;45(5):527–32.

    Article  CAS  Google Scholar 

  62. Juarranz MG, et al. Vasoactive intestinal peptide modulates proinflammatory mediator synthesis in osteoarthritic and rheumatoid synovial cells. Rheumatology (Oxford). 2004;43(4):416–22.

    Article  CAS  Google Scholar 

  63. Juarranz Y, et al. VIP decreases TLR4 expression induced by LPS and TNF-alpha treatment in human synovial fibroblasts. Ann N Y Acad Sci. 2006;1070:359–64.

    Article  PubMed  CAS  Google Scholar 

  64. Larocca L, et al. VIP limits LPS-induced nitric oxide production through IL-10 in NOD mice macrophages. Int Immunopharmacol. 2007;7(10):1343–9.

    Article  PubMed  CAS  Google Scholar 

  65. Martinez C, et al. Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide modulate endotoxin-induced IL-6 production by murine peritoneal macrophages. J Leukoc Biol. 1998;63(5):591–601.

    PubMed  CAS  Google Scholar 

  66. Tao Q, Ren J, Li J. Vasoactive intestinal peptide inhibits adhesion molecule expression in activated human colon serosal fibroblasts by preventing NF-kappaB activation. J Surg Res. 2007;140(1):84–9.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The work described in this paper was supported, in part, by NIH SBIR grant 1R43AI082723 and by VA Merit Review.

The NIH had no influence on our decision about study design; the collection, analysis, and interpretation of data; the writing of the report; and the decision to submit the paper for publication.

DCB and AB are consultants to, and ANA, CCJ, GMC, SR, and EMB are employees of PharmaIN Corp.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elijah M. Bolotin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reichstetter, S., Castillo, G.M., Rubinstein, I. et al. Protected Graft Copolymer Excipient Leads to a Higher Acute Maximum Tolerated Dose and Extends Residence Time of Vasoactive Intestinal Peptide Significantly Better than Sterically Stabilized Micelles. Pharm Res 30, 670–682 (2013). https://doi.org/10.1007/s11095-012-0904-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0904-4

KEY WORDS

Navigation