Skip to main content
Log in

A Combinatorial Library of Bi-functional Polymeric Vectors for siRNA Delivery In Vitro

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

An Erratum to this article was published on 06 June 2013

ABSTRACT

Purpose

To apply a combinatorial chemistry approach toward the design of polymeric vectors, and to evaluate their effectiveness as siRNA delivery systems in vitro.

Methods

Poly(acrylic acid) (pAA) was synthesized via RAFT polymerization with well-controlled molecular weights (M n: 3 kDa, 5 kDa, 10 kDa and 21 kDa). A polymer library was generated from the pAA precursors by conjugating two distinct moieties, agmatine (Agm) and D-(+)-galactosamine (Gal), at various ratios. Biophysical and cellular characterization was evaluated in vitro for these polymeric vectors using MDA-MB-231-luc+ cells.

Results

A critical balance between Agm/Gal content and polymer molecular weight must be attained to achieve favorable transfection efficacies. From the library of 22 polymers, only a few had knockdown efficiencies commensurate with effective siRNA delivery, particularly those with polymer precursor M n of 5 kDa and 10 kDa. Highest protein knockdown of 84% was achieved by a polymer conjugate with a 5 kDa pAA backbone with a side chain composition of 55% Agm and 17% Gal.

Conclusions

Effective delivery of siRNA was found to be highly dependent on the molecular structure of the polymeric vector. The combinatorial approach employed provided the tools to identify optimal structural properties leading to efficient siRNA delivery for this class of vector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

Agm:

agmatine

FA:

fluoresceinamine

Gal:

D-(+)-galactosamine

M n :

number-average molecular weight

pAA:

poly(acrylic acid)

PDI:

polydispersity index

PEIb:

branched polyethyleneimine

siRNA:

small interfering RNA

REFERENCES

  1. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391:806–11.

    Article  PubMed  CAS  Google Scholar 

  2. Dillon CP, Sandy P, Nencioni A, Kissler S, Rubinson DA, Parijs LV. RNAi as an experimental and therapeutic tool to study and regulate physiological and disease processes. Annu Rev Physiol. 2005;67:147–73.

    Article  PubMed  CAS  Google Scholar 

  3. Dykxhoorn DM, Lieberman J. The silent revolution: RNA interference as basic biology, research tool, and therapeutic. Ann Rev Med. 2005;56:401–23.

    Article  PubMed  CAS  Google Scholar 

  4. Shan G. RNA interference as a gene knockdown technique. Int J Biochem Cell Biol. 2010;42(8):1243–51.

    Article  PubMed  CAS  Google Scholar 

  5. Doody A, Putnam D. RNA-interference effectors and their delivery. Crit Rev Ther Drug Carrier Syst. 2006;23(2):134–60.

    Google Scholar 

  6. Wiethoff CM, Middaugh CR. Barriers to nonviral gene delivery. J Pharm Sci. 2003;92:203–17.

    Article  PubMed  CAS  Google Scholar 

  7. Wong SY, Pelet JM, Putnam D. Polymer systems for gene delivery—past, present and future. Prog Polym Sci. 2007;32:799–837.

    Article  CAS  Google Scholar 

  8. Pack DW, Hoffman AS, Pun S, Stayton PS. Design and development of polymers for gene delivery. Nat Rev Drug Discov. 2005;4:581–93.

    Article  PubMed  CAS  Google Scholar 

  9. Putnam D. Polymers for gene delivery across length scales. Nat Mater. 2006;5(6):439–51.

    Article  PubMed  CAS  Google Scholar 

  10. Demeneix B, Hassani Z, Behr JP. Towards multifunctional synthetic vectors. Curr Gene Ther. 2004;4:445–55.

    Article  PubMed  CAS  Google Scholar 

  11. Green JJ, Langer R, Anderson DG. A combinatorial polymer library approach yields insight into nonviral gene delivery. Acc Chem Res. 2007;41:749–59.

    Article  Google Scholar 

  12. Lynn DM, Anderson DG, Putnam D, Langer R. Accelerated discovery of synthetic transfection vectors: Parallel synthesis and screening of a degradable polymer library. J Am Chem Soc. 2001;123:8155–6.

    Article  PubMed  CAS  Google Scholar 

  13. Anderson DG, Akinc A, Hossain N, Langer R. Structure/property studies of polymeric gene delivery using a library of poly(β-amino esters). Mol Ther. 2005;11:426–34.

    Article  PubMed  CAS  Google Scholar 

  14. Anderson DG, Lynn DM, Langer R. Semi-automated synthesis and screening of a large library of degradable cationic polymers for gene delivery. Angew Chem Int Ed. 2003;42:3153–8.

    Article  CAS  Google Scholar 

  15. Wong SY, Sood N, Putnam D. Combinatorial evaluation of cations, pH-sensitive and hydrophobic moieties for polymeric vector design. Mol Ther. 2009;17:480–90.

    Article  PubMed  CAS  Google Scholar 

  16. Thomas M, Lu JJ, Zhang C, Chen J, Klibanov AM. Identification of novel superior polycationic vectors for gene delivery by high-throughput synthesis and screening of a combinatorial library. Pharm Res. 2007;24:1564–71.

    Article  PubMed  CAS  Google Scholar 

  17. Chen DJ, Majors BS, Zelikin A, Putnam D. Structure-function relationships of gene delivery vectors in a limited polycation library. J Control Release. 2005;103:273–83.

    Article  PubMed  CAS  Google Scholar 

  18. Pelet JM, Putnam D. An in-depth analysis od polymer analogous conjugation using DMTMM. Bioconjugate Chem. 2011;22:329–37.

    Article  CAS  Google Scholar 

  19. Katas H, Alpar HO. Development and characterisation of chitosan nanoparticles for siRNA delivery. J Control Release. 2006;115:216–25.

    Article  PubMed  CAS  Google Scholar 

  20. Grayson ACR, Doody AM, Putnam D. Biophysical and structural characterization of polyethyleneimide-mediated siRNA delivery in vitro. Pharm Res. 2006;23:1868–76.

    Article  PubMed  Google Scholar 

  21. Kolonko EM, Kiessling LL. A polymeric domain that promotes cellular internalization. J Am Chem Soc. 2008;130:5626–7.

    Article  PubMed  CAS  Google Scholar 

  22. Nakase I, Niwa M, Takeuchi T, Sonomura K, Kawabata N, Koike Y, et al. Cellular uptake of arginine-rich peptides: roles for macropinocytosis and actin rearrangement. Mol Ther. 2004;10(6):1011–22.

    Article  PubMed  CAS  Google Scholar 

  23. Futaki S, Suzuki T, Ohashi W, Yagami T, Tanaka S, Ueda K, et al. Arginine-rich peptides. An abundant source of membrane-permeable peptides having potentials as carriers for intracellular protein delivery. J Biol Chem. 2001;276:5836–40.

    Article  PubMed  CAS  Google Scholar 

  24. Oishi M, Nagasaki Y, Itaka K, Nishiyama N, Kataoka K. Lactosylated poly(ethylene glycol)-siRNA conjugate through acid-labile beta-thiopropionate linkage to construct pH-sensitive polyion complex micelles achieving enhanced gene silencing in hepatoma cells. J Am Chem Soc. 2005;127:1624–5.

    Article  PubMed  CAS  Google Scholar 

  25. Kunath K, Harpe A, Fischer D, Kissel T. Galactose-PEI-DNA complexes for targeted gene delivery: degree of substitution affects complex size and transfection efficiencies. J Control Release. 2003;88:159–72.

    Article  PubMed  CAS  Google Scholar 

  26. Zhang X-Q, Wang X-L, Zhang P-C, Liu Z-L, Zhuo R-X, Mao H-Q, et al. Galactosylated ternary DNA/polyphosphoramidate nanoparticles mediate high gene transfection efficiency in hepatocytes. J Control Release. 2005;102:749–63.

    Article  PubMed  CAS  Google Scholar 

  27. Sagara K, Kim SW. A new synthesis of galactose-poly(ethylene glycol)-polyethylenimine for gene delivery to hepatocytes. J Control Release. 2002;79:271–81.

    Article  PubMed  CAS  Google Scholar 

  28. Hashida M, Takemura S, Nishikawa M, Takakura Y. Targeted delivery of plasmid DNA complexed with galactosylated poly(L-lysine). J Control Release. 1998;53:301–10.

    Article  PubMed  CAS  Google Scholar 

  29. Nishikawa M, Takemura S, Takakura Y, Hashida M. Targeted delivery of plasmid DNA to hepatocytes in vivo: optimization of the pharmacokinetics of plasmid DNA/galactosylated poly(L-lysine) complexes by controlling their physicochemical properties. J Pharmacol Exp Ther. 1998;287:408–15.

    PubMed  CAS  Google Scholar 

  30. Harada A, Kataoka K. Chain length recognition: core-shell supramolecular assembly from oppositely charged block copolymers. Science. 1999;283(5398):65–7. 1999 January 1.

    Article  PubMed  CAS  Google Scholar 

  31. Portis AM, Carballo G, Baker GL, Chan C, Walton SP. Confocal microscopy for the analysis of siRNA delivery by polymeric nanoparticles. Microsc Res Tech. 2010;73(9):878–85.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

We thank the Alfred P. Sloan Foundation Graduate Scholarship Programs and National Action Council for Minorities in Engineering (NACME), Inc. for a Sloan Fellowship (J.M.P.), the Cornell’s Learning Initiative in Medicine and Bioengineering (CLIMB) for the National Science Foundation (NSF) GK-12 Fellowship (J.M.P), and the Cornell University NMR and NBTC facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Putnam.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 4.09 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pelet, J.M., Putnam, D. A Combinatorial Library of Bi-functional Polymeric Vectors for siRNA Delivery In Vitro . Pharm Res 30, 362–376 (2013). https://doi.org/10.1007/s11095-012-0876-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0876-4

KEY WORDS

Navigation